FAQ: Difference between revisions
Jpr@uab.edu (talk | contribs) (Initial draft of Network questions and answers) |
Jpr@uab.edu (talk | contribs) (→How do I order or modify a network connection?: Provide link and details on ordering a connection) |
||
Line 32: | Line 32: | ||
=== How do I order or modify a network connection? === | === How do I order or modify a network connection? === | ||
( | Computer data connections are ordered from [http://www.comm.uab.edu/commweb/default.aspx UAB IT Telecommunications Services] via their [https://commservices.comm.uab.edu/ServiceRequest service request form]. | ||
To place an order you will need to provide a general ledger account number for billing and identify the location (building address) of the service request. The wall-jack identification number for the network connection will be needed to complete the service request and can be entered on the form. | |||
If you have questions please contact UABCOMM@uab.edu or call 4-0503. | |||
=== Who pays for my network connection? === | === Who pays for my network connection? === |
Revision as of 22:10, 7 April 2011
A FAQ for things you might like to know
Networking Questions
What the difference between Mbs and MBs?
"Mbs" stands for "megabits per second". "MBs" stands for "megabytes per second". A lower-case "b" designates bits (1's and 0's) and an upper-case "B" designates bytes, 1 byte equals 8 bits.
Bits are used to measure network data transfer rates in seconds and bytes are used to measure data storage sizes. When stored data is moved across a network, however, it is convenient to consider transfer times measured in the number of bytes of stored data moved in one second.
What do 10Mbs, 100Mbs, and 1Gbs mean?
Network speeds are listed by the number of bits (1's and 0's) they can transfer in one second. Modern networks transfer millions of bits per second, designated "Mbs" and read "mega-bits per second". Common network speeds are 10Mbs, 100Mbs, and 1000Mbs. 1000 megabits are equal to 1 gigabit, and 1000Mbs is typically written "1Gbs" and read "one gigabit per second" (1 billion bits per second).
What is the recommended configuration for a researcher's network connection?
It depends on the work that you do. If your work frequently involves moving data sets to and from your computer for visualization, analysis, or collaboration, you should seriously consider a 100Mbs full-duplex network connection as your baseline.
How do I order or modify a network connection?
Computer data connections are ordered from UAB IT Telecommunications Services via their service request form.
To place an order you will need to provide a general ledger account number for billing and identify the location (building address) of the service request. The wall-jack identification number for the network connection will be needed to complete the service request and can be entered on the form.
If you have questions please contact UABCOMM@uab.edu or call 4-0503.
Who pays for my network connection?
You do. Network connections are accounted for via a federally regulated service center run by UAB IT. The rates are set based on the cost to deliver the service. Funds to pay for these connections can come from any legitimate source fund directly allocated in grants, indirect funds routed through departments, or other departmental or research support funds.
How much do network connections cost?
(Link to UABCOMM)
How much network bandwidth is available is available on campus?
Individual network connections at 10Mbs, 100Mbs, or 1Gbs speeds can be delivered to any location on the campus network at standard rates. Additionally, wireless network connectivity is available across campus.
What does the campus network look like?
The campus network can be visualized as a collection of network trees, roughly one per building, with the root of each tree connecting to an expandable high bandwidth core network backplane (currently running at 10Gbs).
The depth of each individual tree is determined by the physical layout of and number of network ports in each building. Each tree is typically no more than three layers deep, including the leaf nodes. The leaf nodes are the end-user connections, i.e. wired wall ports or wifi connections. The internal nodes of each tree are network switches and the switches are connected to the next layer via fast connections (currently running at 1Gbs).
Each tree (each building) connects to the core network backplane via a fast connection (currently running at 1Gbs). At this core network connection, the data packets are routed to their final destination on- or off-campus.
How is the campus network connected to off-campus networks?
The campus core network backplane is connected to off-campus networks like the commercial Internet (Google, Facebook, Amazon) and national high bandwidth research networks (Internet2 and NLR) which provide high speed connections to research institutions and labs across the country. The fastest network route to a specific off-campus destination is chosen automatically as the network packets move off-campus.
Custom configurations to meet unique research needs or specific
performance targets can be designed. This requires advanced planning
and an understanding of the proposed research workloads and workflow.
Please contact Research Computing. The cost for these customizations
can often be included in research proposals.
How fast are 10Mbs, 100Mbs, and 1Gbs networks?
To get a sense for the performance of different network speeds, it's easiest to use the following rules of thumb for comparing network speeds to data set sizes and their transfer time:
- 10Mbs can transfer 1MBs
- 100Mbs can transfer 10MBs
- 1000Mbs (1Gbs) can transfer 100MBs
A CDROM can hold 700MB of data. Transferring this much data would take about 7 seconds on a 1Gbs network, 70 seconds (more than 1 minute) to transfer on a 100Mbs network, and 700 seconds (more than 10 minutes) to transfer on a 10Mbs network.
What factors impact the actual speeds I can expect in the real world?
The actual transfer rates you get depend on three factors: software, hardware, and other users.
Data transfer software and computer hardware can significantly impact real world transfer rates. If you are transferring lots of data, you will see your best performance with software that can keep the network full, computer hardware that is not slower than the data network, and a network connection sized for your data sets and patience.
How does my copying software impact my transfer speeds?
The software you use to transfer data is the most import factor in maximizing data throughput. Most traditional copy methods move data in a single-file line. Modern computer hardware hides this software inefficiency and can easily keep a 10Mbs connection full and can do ok with a 100Mbs connection. If you are moving lots of data or using a 1Gbs network, you need to use software tuned for high-speed data transfer.
High speed data transfer software uses multiple single-file lines in parallel improve network throughput. This software must be used at both ends of the data transfer in order coordinate the parallel transfer streams. You won't get very far if you are smart but your peer is not.
What high-speed data transfer software can keep up?
It's important to use improved data transfer software that can move data . (Post examples)
How does my computer hardware impact my transfer speeds?
Computer hardware also impacts transfer speeds. Your slowest piece of hardware will dictate your maximum data transfer rate. If you have a slow disk (you should read that as "an external USB hard drive"), you will be limited by its data transfer speeds.
Additionally, your computer may be fast but it still has to manage your workload and coordinate use of all the devices in your computer, including the network connection. If you are crunching numbers or doing heavy visualizations at the same time you are trying to transfer data, your computer may not be able to keep up. Note, that this scenario is common when you are reading data for your visualization off a file server. Sometimes you need to move your data before you can use it.
What's the justification for this transfer rate rule of thumb?
The logic for this metric is that a 10Mbs (10 mega-bit per second) network connection will move 10 million bits per second. Data is measured in 8-bit bytes and the rule of thumb for Ethernet is that performance peaks at 80% capacity. This provides the easy conversion factor of 10Mbs=1MBs. Note that the lower-case "b" means "bits" and upper-case "B" means bytes, ie. 8 bits. The network speeds scale up easily by factors of 10. So 100 megabit per second connection is capable of transferring 10 megabytes per second, and a 1000 megabit per second is capable of transferring 100 megabytes per second.
Theoretically, a 100Mbs connection will transfer 100 million bits in one second, or about 10 megabytes (MB) per second. This means you would be able to transfer a CD's worth of data (about 700MB) in about 70 seconds, about 1 minute. (Compare this to a 10x slower connection of 10Mbs and it would take 700 seconds
What is the difference between Mbs and MBs?
(1Mbs = 1Megabit per second = 1000 bits per second) full-duplex (send & receive at the same time)
How do i test my speed?
speedtest.dpo.uab.edu
How do i order a network connection and what does it cost?
You can order a network connection by calling AskIT and placing an order
How do i upgrade an existing connection?
UABgrid
UABgrid is an infrastructure pilot of UAB IT Research Computing. More information can be found in the UABgrid FAQ though this information may be dated.