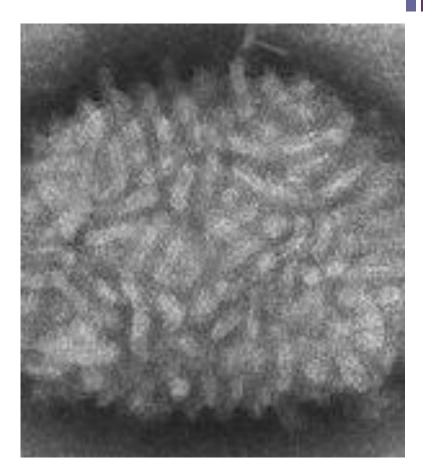


UAB DNA-Seq Analysis Workshop

John Osborne Research Associate Centers for Clinical and Translational Science ozborn@uab.,edu

+ Thanks in advance

- You are the Guinea pigs for this workshop!
- At this point I hope you have:
 - Brought your laptop (Galaxy is pretty awkward with iPad)
 - Logged into Galaxy
 - Are eagerly awaiting some DNA-Seq data with a blank history pane
- Live demo
- Untimed


+ Format - Workshop

Two important URLs

- http://galaxy.uabgrid.uab.edu
- http://docs.uabgrid.uab.edu/wiki/Galaxy DNA-Seq Tutorial
- Presentation more or less follows the Workshop Tutorial, but has extra details and less explicit instructions
- There is no pre-allocated time to helping people run the analysis so please interrupt me if something is unclear, wrong or just doesn't work
- Survey how many people will be trying the DNA-Seq analysis?

+ Vaccinia Western Reserve (WR)

- Vaccinia strain Western Reserve is probably the most commonly used poxvirus strain for research
 - Vaccinia famous as the smallpox vaccine but has other uses as well
- Double stranded DNA virus with a AT rich genome approximately 195kb in length with inverted tandem repeats at the end of the genome

The Problem: Computational Biology Perspective

- 3 strains of Vaccinia were sequenced
- Parental strain VAC WR with wild type phenotype
- 2 mutant strains with different phenotypes
 - CMV 227R
 - **CMV 21950**R
- Illumunia paired end reads
- 6 Fastq files

- What are the genetic differences between these strains?
- Assumption is there is a genetic basis for the difference in phenotype
- Goal List of potentially biologically relevant differences than can be followed up in the lab

- Vaccinia selected for DNA-Seq because it is small enough to get results in a workshop and won't fill up the /lustre disk
- SNP analysis is different with mammals (particularly humans) where there are existing databases of SNP info (dbSNP being the most famous)
- GATK is probably more state of the art than Samtools for variant analysis and we use it here in our group but:
 - No available on Galaxy yet
 - Doesn't always make a difference
- Vaccinia is well designed for reference based sequencing, since there is a single source strain which has already sequenced
 - Faster and easier than de-novo sequencing which is not covered here
- There may be better ways to do this and I'm happy to hear about them
- Let's start!

Analyze Data V	Vorkflow Shared Data Admin Help Use	er		Using 8.1 Gb
Data Library "Galaxy DNA-Seq Tutoria	Il Vaccinia WR Files"	Add	datasets Add folder	Library Actions 🔻
Vaccinia WR library, fastq and pileup files				
Name	Message	Uploaded By	Date	File Size
📃 🔻 📴 Galaxy Workshop Fastq Files 👻	Fastq files for the tutorial			
☐ CMV-21950R 3 1.fastq ▼		ozborn@uab.edu	2011-09-15	829.1 Mb
<u> CMV-21950R 3 2.fastq</u> ▼	None	ozborn@uab.edu	2011-09-15	829.1 Mb
CMV-227R 3 2.fastqsanger 🔻	None	ozborn@uab.edu	2011-09-15	697.6 Mb
CMV-VAC-WR 3 2.fastqsanger 🔻	None	ozborn@uab.edu	2011-09-15	578.4 Mb
CMV-227R 3 1.fastqsanger 🔻	FASTQ Trimmer on data 28	ozborn@uab.edu	2011-09-15	692.9 Mb
CMV VAC WR 3 2 1.fastqsanger 🔻	FASTQ Trimmer on data 50	ozborn@uab.edu	2011-09-15	574.5 Mb
📃 🔻 📴 <u>Pileup Files</u> 🔻	Plleup files for Galaxy Tutorial			
□ VAC CMV 21950R Pileup マ	None	ozborn@uab.edu	2011-09-15	224.1 Mb
□ VAC CMV 227R Pileup ▼	None	ozborn@uab.edu	2011-09-15	256.9 Mb
□ VAC WR Wild Type Pileup ▼	None	ozborn@uab.edu	2011-09-15	148.9 Mb
For selected datasets: Import to current history	¢ Go			

Put it in your history and make sure the details (Reference, format)are

correct

<u>6:</u> CMV VAC WR 3 2 1.fast	@ qsa		
<u>5:</u> CMV-227R 3 1.fastqsan	@ ger	Ø	×
<u>4: CMV-VAC-</u> <u>WR_3_2.fastqsanger</u>	۲	0	×
<u>3:</u> CMV-227R_3_2.fastqsan	@ ger	0	×

Over 4GB of data for this this virus already!

Edit Attributes Name: CMV-21950R 3 1.fastq Info: uploaded fastq file Annotation / Notes: None Add an annotation or notes to a dataset; annotations a Database/Build: Vaccinia Western Reserver NCBI Reference Strain 🔝 Save Auto-detect This will inspect the dataset and attempt to correct the Change data type New Type: fastgsanger This will change the datatype of the existing dataset bu Save

+ FastQ Format

	888888888888888888888888888888888888888		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·	*****	******	
	IIIIII	IIIIIIIIIIIIIIIIIIIII		
	J JJJ	33333333333333333333333	JJJJJJJJJJJJJJJJJJ	
LLLLLLLLLLLLLLLL	LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	LLLLL		
!"#\$%&'()*+,/0	123456789:;<=>?@ABCDE	FGHIJKLMNOPORSTUVWX	YZ[\]^_`abcdefghijklmnopgrs	tuvwxyz{ }~
	1			
33	59 64	73	104	126
S - Sanger	Phred+33, raw reads	typically (0, 40)		
X - Solexa	Solexa+64, raw reads			
	Phred+64, raw reads			
	Phred+64, raw reads			
	1=unused, 2=Read Seg	ment Quality Contro	l Indicator (bold)	
(Note: See dis	cussion above).			
L - Illumina 1.8+	Phred+33, raw reads	typically (0, 41)		

- Highly recommend FastQ Groomer when dealing with new data
- Costly (time and space)

+ Available Reference Genomes

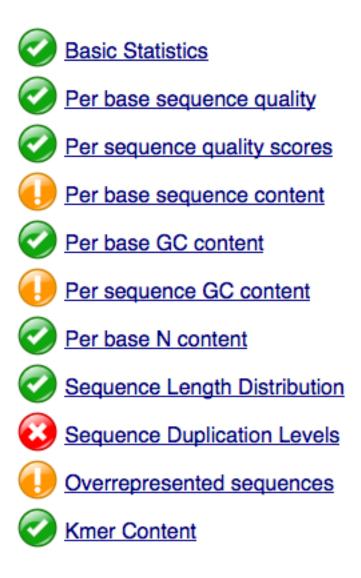
http://docs.uabgrid.uab.edu/wiki/Galaxy#Available_datasets

If you need a genome added or indexed, contact me. Set up for bwa, bowtie (tophat, cuffdiff), samtools, picard tools well scripted. Others less so

Genome	Downloaded	Blast Database	BWA Index	Bowtie Index	PerM Index	Sam Index	SRMA Dict
hg19 (by chromosome)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Mouse (mm9)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vaccinia Western Reserve	Yes	No	Yes	Yes	Yes	Yes	Yes
Mycoplasma pneumonniae (M129)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Mycoplasma pneumonniae (FH)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Chromosome 11 Mouse Contigs	Yes	No	Yes	Yes	Yes	Yes	Yes
S. cerevisae (sacCer2)	Yes	No	Yes	Yes	No	Yes	Yes
C. elegans (ce6 and WS226)	Yes	No	Yes	Yes	No	Yes	Yes
Tree Shrew 62	Yes	No	Yes	Yes	No	Yes	Yes

- Make sure reference genomes are correct including CMV-21950R_3_1.fastq
- Run FastQC

- Select NGS: QC and manipulation -> FastQC
- Queue all 6 up, we do this in parallel!


Fastqc: Fastqc QC	
Short read data from your current history	<i>r</i> :
1: CMV-21950R_3_1.fastq \$)
Title for the output file - to remind you w	vhat the job was for:
FastQC CMV-21950R_3_1	
Contaminant list:	
Selection is Optional	V
, tab delimited file with 2 columns: name and	sequence. For example

FastQC Summary

Should we be worried about sequence duplication levels?

What about sequence content and per base GC content?

Summary

Quality score distribution over all sequences

		· · · · · · · · · · · · · · · · · · ·	induction over an sequences	
				Average Quality per read
1000000				
800000				
600000				
400000				
200000				
0 234567	8 9 10 12	14 16 18	20 22 24 26 28 3	0 32 34 36 38
		Mean Sequence Q	uality (Phred Score)	

+ More detailed quality breakdown

\$

٠

Compute quality statistics

Library to analyse:

1: CMV-21950R_3_1.fastq

Execute

Draw quality score boxplot

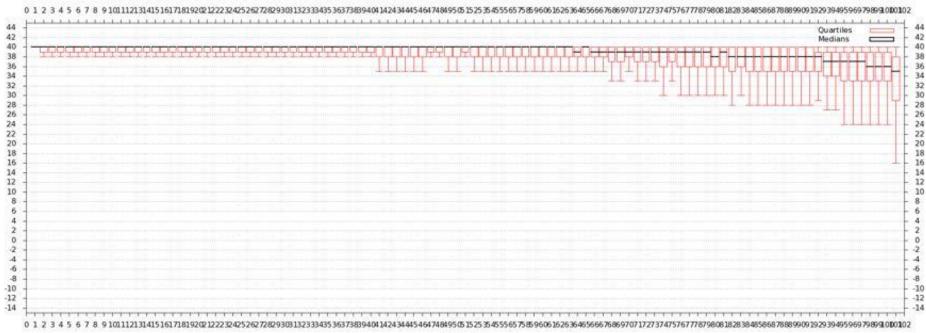
Statistics report file:

13: Compute quality s..s on data 1 🛟

output of 'FASTQ Statistics' tool

- Compute quality statistics and draw a boxplot for all 6 Fastq files
 - 12 jobs total
 - Queue them up, no need to wait for previous job to finish

The last base sequenced (102) is of poor quality


est, -15=Lowest)

40=High

Scale

Quality Score (Solexa

Quality Scores for Compute quality statistics on data 50

mad any him

Trim CMV-21950R_3_1.fastq from the 3` end by one base pair

\$

FASTQ Trimmer

FASTQ File:

1: CMV-21950R_3_1.fastq

Define Base Offsets as:

Absolute Values

Use Absolute for fixed length reads (Illumina, SOLID) Use Percentage for variable length reads (Roche/454)

\$

Offset from 5' end:

0

Values start at 0, increasing from the left

Offset from 3' end:

1

Values start at 0, increasing from the right

Keep reads with zero length:

+ Run our BWA alignments

Map with BWA for Illumina

Will you select a reference genome from your history or use a built-in index?:

Use a built-in index

Select a reference genome:

Vaccinia Vaccinia WR

\$

Is this library mate-paired?:

Paired-end 🗘

Forward FASTQ file:

15: FASTQ Trimmer on data 1

FASTQ with either Sanger-scaled quality values (fastqsanger) or Illumina-scaled quality values (fastqillumina)

\$

Reverse FASTQ file:

2: CMV-21950R_3_2.fastq \$

FASTQ with either Sanger-scaled quality values (fastqsanger) or Illumina-scaled quality values (fastqillumina)

BWA settings to use:

Commonly Used 🛟

For most mapping needs use Commonly Used settings. If you want full control use Full Parameter List

Suppress the header in the output SAM file:

BWA produces SAM with several lines of header information

- BWA will align all the short reads to our reference genome
 - BWA is the algorithm of choice for DNA-Seq with Illumina data
 - CASAVA 1.8 may do as well for SNPs, BWA does indels better
- Select NGS Mapping -> Map with BWA for Illumina
- Set reference genome as vaccinia
- Set paired-end, be careful selecting pairs as the library is out of order
- Run for all 3 reminder don't wait for previous results

+ Samtools – SAM to BAM

- We have an alignment how do we look at it?
- One common option is to convert the SAM file to a BAM file and examine in a viewer
- BAM files are required by a lot of downstream software and are smaller than the SAM files
- Could do filtering and sorting of the SAM file before doing this, but not needed in this case
- Convert all 3 SAM files to BAM
- This should work even if the SAM files are "empty"

SAM-to-BAM Choose the source for the reference list: Locally cached \$ SAM File to Convert: 71: Map with BWA for ..apped reads \$ Execute

+ Samtool - Flagstats

flagstat

BAM File to Convert:

19: SAM-to-BAM on dat..nverted BAM 🛟

```
5827116 in total
0 QC failure
0 duplicates
1109964 mapped (19.05%)
5827116 paired in sequencing
2913558 read1
2913558 read2
1102008 properly paired (18.91%)
1104254 with itself and mate mapped
5710 singletons (0.10%)
0 with mate mapped to a different chr
0 with mate mapped to a different chr (mapQ>=5)
```

- No QC failures or optical duplicates, so we didn't need to flag those
- Could have removed improperly paired reads but that would remove a lot of singletons mapping to different ITRs
- The big surprising result - low mapping of results!
- Contamination? I don't know yet.

Generate pileup Will you select a reference genome from your history or use a built-in index?: Use a built-in index \$ Select the BAM file to generate the pileup file for: 76: SAM-to-BAM on dat..nverted BAM Whether or not to print the mapping guality as the last column: Do not print the mapping guality as the last cc 💲 Makes the output easier to parse, but is space inefficient Whether or not to print only output pileup lines containing indels: \$ Print all lines Where to cap mapping quality: 60 Call consensus according to MAQ model?: Yes ‡ Theta parameter (error dependency coefficient) in the MAQ consensus calling model: 0.85 Samtools – Generate Pileup Number of haplotypes in the sample: 2 Make sure consensus is called Greater than or equal to 2 according to the MAQ model Expected fraction of differences between a pair of haplotypes: 0.001 Phred probability of an indel in sequencing/prep: 40 Execute

SNP effect

Sequence changes (SNPs, MNPs, InDels):	
82: Generate pileup orted pileup 🛟	
Input format:	
Pileup 🛟	
Genome:	
Vaccinia Western Reserve (vacwr)	
Prepepnd 'chr' to chromosome names:	
Upstream / Downstream length:	
200 bases	\$
Filter homozygous / heterozygous change • No filter (analyze everything)	es:
O Analyze homozygous sequence changes	only
O Analyze heterozygous sequence changes	only
Filter sequence changes:	
No filter (analyze everything)	
O Analyze deletions only	
O Analyze insertions only	
Only MNPs (multiple nucleotide polymor)	ohisms)
Only SNPs (single nucleotide polymorphi	sms)
Filter output:	

Select All Unselect All

☑ Do not show DOWNSTREAM changes

Do not show INTERGENIC changes

Do not show INTRON changes

Do not show UPSTREAM changes

Do not show 5_PRIME_UTR or 3_PRIME_UTR changes

SNPEff – All positions

- Needs a reference genome with GFF3 file to determine the impact of mutations
- Exclude introns has no real impact
- Application is near the bottom of the application pane
- Select "Pileup" as input format
- Results overwhelming, calls all minor variants as MNPs
- Better to filter first

+

Filter pileup

Select dataset:

80: VAC CMV 21950R Pileup

which contains:

Pileup with ten columns (with consensus)

See "Types of pileup datasets" below for examples

Do not consider read bases with quality lower than:

20

No variants with quality below this value will be reported

Do not report positions with coverage lower than:

100

Pileup lines with coverage lower than this value will be skipped

\$

Only report variants?:

Yes ‡

See "Examples 1 and 2" below for explanation

Convert coordinates to intervals?:

No 🗘

See "Output format" below for explanation

Print total number of differences?:

No ‡

See "Example 3" below for explanation

Print quality and base string?:

Yes 🛟

See "Example 4" below for explanation

Execute

Filter Pileup

Remove low coverage areas, I choose 100 reads as a cutoff

Select 10 column format

If you don't have results, you can go back to the library and pull out already computed results

Filter

Filter:

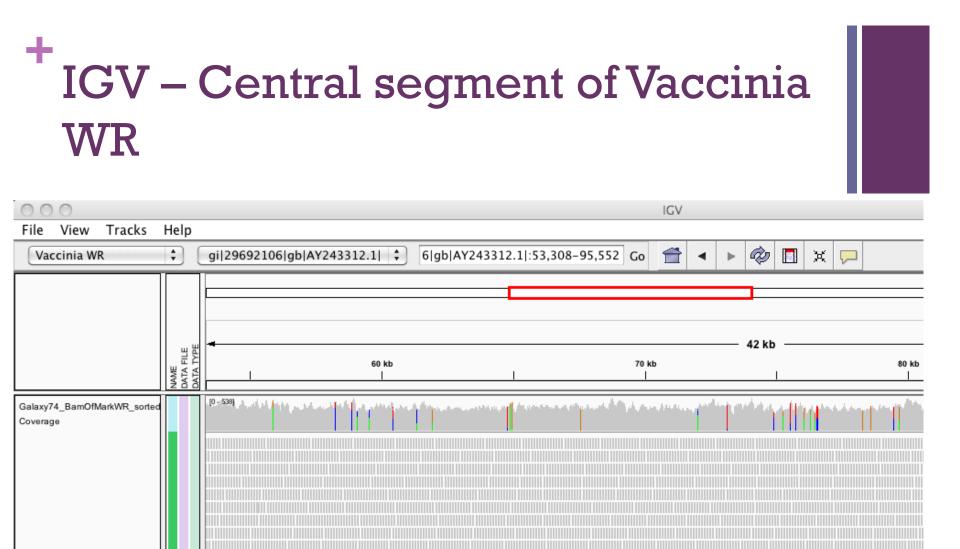
87: SNP effect on data 82

Dataset missing? See TIP below.

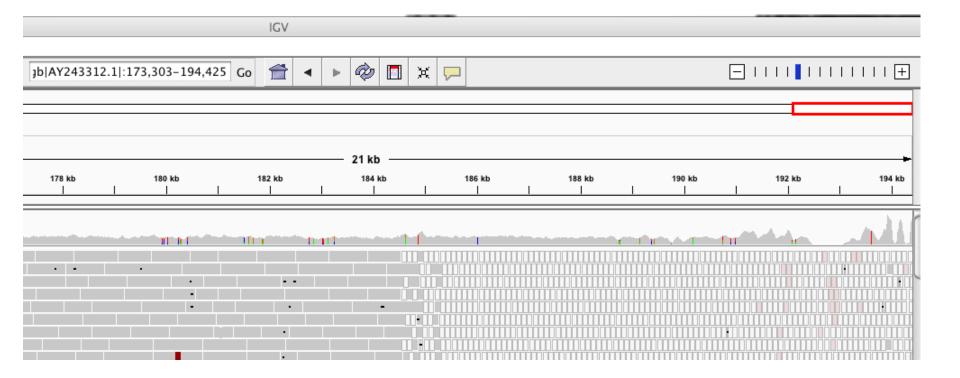
With following condition:

c3!='c4

Double equal signs, ==, must be used as shown above.


\$

Comparative Genomics


Compare:	
100: CMV 21950R Varian Ref Vac WR	~
Using column:	
c2 \$	
against:	
101: VAC WR variants v Ref Vac WR	~
and column:	
c2 \$	
To find:	
Non Matching rows of 1st dataset	

We only want differences between the mutant strains and the wild type. Here we filter out all mutants in common between the CMV 21950R and the parental VAC WR strain

# Chromo	Position	Referen	ce	Change	Change	type	Homozy	ygous
gi 29692106 g	b AY243312.1	100897	C	т	SNP	Hom	225	494
gi 29692106 g	b AY243312.1	100897	C	T	SNP	Hom	225	494
gi 29692106 g	b AY243312.1	100903	т	C	SNP	Hom	176	519
gi 29692106 g		100903	T	C	SNP	Hom	176	519

+ IGV – Vaccinia WR Right End

