Alabama Supercomputer Center
Alabama Research and Education Network
New and Cool HPC Developments at the Alabama Supercomputer Center presented at UAB Research Computing Day 2013

- Ultraviolet 2000 & processor models
- Dense Memory Cluster (DMC)
- GPUs & programming them
- Documentation updates
- non-HPC activities at ASA
How Supercomputers Are Used

Computer Science
- Auburn University Dr. Lotz
- Alabama A&M University Dr. Kim
- ASU Dr. Strout

Mathematics
- University of Alabama Dr. Tamer
- UAH Dr. Jarem

Business
- Auburn University Dr. Santos

Music
- UAB Dr. Shin
- Auburn University Dr. Lin

Nuclear Physics
- Quantum Chemistry
- Semimolecular Dynamics
- Bioinformatics
- Materials Science

Neurology
- Electromagnetics
- Design Analysis
- Agriculture
- Weather Modeling
- Social Science
- Earth Science

Solar System
- USA Dr. Kimball

Galaxy
- BSCC Dr. Freeman

Length Scale in Meters

10^{-15} 10^{-10} 10^{-5} 10^0 10^5 10^10 10^{15} 10^{20}
A Tale of Two Supercomputers

The DMC has many nodes with 8 or 16 cores, similar to having many small rockets.

The UV has one big node with 256 cores and much more memory per node, similar to having a Saturn V rocket.
Utilizing Processors

- **Serial Processing** – Traditionally, most software has used a single computer processor core.
 - Both computers can run serial software, but the UV has more memory.

- **Shared Memory Parallelism** – Software that runs on multiple processor cores that can access the same memory using programming tools like OpenMP.
 - Example: Running World of Warcraft on a dual core laptop.
 - The DMC can run shared memory programs on the 8-16 cores in a given node.
 - The SGI UV2000 can run shared memory programs on the 256 cores in a compute node.
 - GPU math co-processors provide a type of shared memory parallelism

- **Distributed Memory Parallelism** – Software that utilizes multiple computers on a network using programming tools like MPI.
 - Example: SETI@home
 - Both the DMC and the SGI UV can run distributed memory programs.
SGI UV Supercomputer

- 268 Xeon “Sandy Bridge” Processors
 - 5,194 GFLOPS Peak
- Shared Memory Architecture
 - NUMAlink shared memory network
- Memory (4TB per node)
 - 4,160 GB Total
- Disk Storage
 - 15 TB shared

UV came online Jan 2013, Altix offline July 2013
Vector/SIMD extensions

• 4 operations to add two single precision (32 bit), four-component vectors

\[
\begin{align*}
\text{vector_result_x} &= \text{vector_1_x} + \text{vector_2_x}; \\
\text{vector_result_y} &= \text{vector_1_y} + \text{vector_2_y}; \\
\text{vector_result_z} &= \text{vector_1_z} + \text{vector_2_z}; \\
\text{vector_result_w} &= \text{vector_1_w} + \text{vector_2_w};
\end{align*}
\]

• Using 128-bit SSE registers, four-component vectors are added in a single operation

• Intel’s Sandy Bridge architecture (used in UV) introduced AVX instructions for 256 bit vector operations, potentially resulting in up to a 2x performance improvement for some applications

AVX capable chips will be added to DMC Q4 2013
Dense Memory Cluster (DMC)

- 1,800 x86-64 Processors (AMD/Intel)
 - 16,462 GFLOPS Peak
- Shared/Distributed Memory Architecture
 - InfiniBand high speed/low latency network
- Memory (24-128GB per node)
 - 10,136 GB
- Disk Storage
 - 225 TB internal, 20 TB shared

40 nodes (20 cores, 128 GB each) will be added to DMC Q4 2013
DMC Nodes

<table>
<thead>
<tr>
<th>Year</th>
<th>Processor</th>
<th>Cores/node</th>
<th>Memory/node</th>
<th>SPECFP/node</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>2x 2.3GHz Opteron</td>
<td>8</td>
<td>64GB</td>
<td>89</td>
</tr>
<tr>
<td>2009</td>
<td>2x 2.26GHz Xeon</td>
<td>8</td>
<td>24GB</td>
<td>155</td>
</tr>
<tr>
<td>2010</td>
<td>2x 2.3GHz Opteron</td>
<td>16</td>
<td>128GB</td>
<td>252</td>
</tr>
<tr>
<td>2011</td>
<td>2x 2.3GHz Opteron</td>
<td>16</td>
<td>128GB</td>
<td>252</td>
</tr>
</tbody>
</table>

Each DMC node has 8-16 CPU cores, 24-128GB of memory and 1-2TB of local disk space. Annual upgrades take advantage of higher density/performance and react to user needs.
Graphic Processing Units (GPUs) are graphics chips typically found in video cards. There has been an experimental movement in supercomputing to utilize these chips as math coprocessors.

Chips have evolved from specialized graphics hardware into more conventional massive multithreaded, manycore SIMD processors.

Previously programmed using standard graphics APIs (DirectX/OpenGL), but new software development kits enable more direct/straightforward programming in C/C++ and other high-level languages.
Comparison of peak theoretical GFLOPs and memory bandwidth for NVIDIA GPUs and Intel CPUs over the past few years.

Graphs from the NVIDIA CUDA C Programming Guide 4.0.
NVIDIA Tesla GPUs (DMC)

Tesla S1070
- 8 T10 GPUs
- 4GB memory/GPU
- 240 cores

Tesla M2070
- 8 Fermi GPUs
- 6GB memory/GPU with ECC support
- 448 cores

16 Kepler K20 (2496 core) GPUs scheduled for Q4 ‘13
// CPU only matrix addition
int main() {
 int i, j;
 for (i=0; i<N; i++) {
 for (j=0; j<N; j++) {
 C[i][j] = A[i][j] + B[i][j];
 }
 }
}

// GPU kernel
__global__ gpu(A[N][N], B[N][N], C[N][N]) {
 int i = threadIdx.x;
 int j = threadIdx.y;
 C[i][j] = A[i][j] + B[i][j];
}

int main() {
 dim3 dimBlk(N, N);
 gpu<<<1, dimBlk>>>(A, B, C);
}
Thread is a single execution of a kernel, and all execute the same code.

Threads within a block have access to shared memory for local cooperation.

Kernel launched as a grid of independent thread blocks, and only a single kernel executes at a time.
Number of Software Packages

- Bioinformatics 62
- Programming 43
- Mathematics 28
- Quantum Chemistry 24
- Visualization 21
- Fluid Dynamics 13
- Molecular Dynamics 12
- Weather Modeling 10
- Materials Science 9

These numbers include libraries and utilities, as well as the core packages.
Compilers and Programming

- **Compilers**
 - GNU C/C++ Fortran 77/90/95
 - Intel C/C++ Fortran 77/90/95
 - Portland Group C/C++ Fortran 77/90/HP

- **Parallel Programming**
 - Shared memory: OpenMP, pthreads, Java threads
 - Distributed memory: MPI
 - Math libraries: ACML, SLATEC, MKL, SCSL, IMSL
 - GPU: CUDA, OpenCL

 OpenACC coming soon
User Support

- **Documentation**
 - HPC User Manual
 - Application specific README files
 - Man pages
 - Programming examples
 - Best practices white papers

- **Queue scripts**
 - A uniform front end for submitting all jobs to the queue that hides the details of queue command syntax.

- **Technical support staff**
 - Our HPC staff have degrees in chemistry, mathematics, business, MIS, computer science, and electrical engineering.

- **Software installation**

New User Manual in 2013
Old Documentation System
A directory for every software package
New Documentation System
A browser to navigate the doc directory

Enter the number of your selection:
Examples of White Papers

- Introduction to Big Data Analysis for Scientists and Engineers
- Software Development Methodologies
- Choosing a Version Control System
- Getting Started with Visualization
- Switching from CUDA 4.x to CUDA 5.0
- Introduction to GPU Programming with CUDA
Torque/MOAB queue system

User commands
- qsub – run a job
- qstat – see status
- checkjob – see job information

Queue Server Node
- Server – keeps track of queues and jobs
- Scheduler – chooses when/where to run jobs

Compute node
* MOM daemon – runs jobs and reports available CPUs/memory

MOAB runs jobs to ensure maximum utilization of the system, without over-subscription, and ensures jobs get the requested amount of memory/CPUs.
Queue scheduler algorithm

- Jobs run only if the requested memory and CPUs are available.

- One person can use a larger percentage of the system, if it isn’t being used.

- Multiple people requesting many resources will get equal number of CPU cores.

- Jobs from small users jump ahead of jobs from big users.

- Reservations ensure resources for class work and types of jobs that take a long time to queue.

- The jobs that have been waiting the longest are labelled as “starving” and other jobs can no longer jump ahead of them.
ASC queue list

<table>
<thead>
<tr>
<th>Queue</th>
<th>CPU</th>
<th>Mem</th>
<th># CPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>small-serial</td>
<td>40:00:00</td>
<td>4gb</td>
<td>1</td>
</tr>
<tr>
<td>medium-serial</td>
<td>90:00:00</td>
<td>16gb</td>
<td>1</td>
</tr>
<tr>
<td>large-serial</td>
<td>240:00:00</td>
<td>120gb</td>
<td>1</td>
</tr>
<tr>
<td>small-parallel</td>
<td>48:00:00</td>
<td>8gb</td>
<td>2-8</td>
</tr>
<tr>
<td>medium-parallel</td>
<td>100:00:00</td>
<td>32gb</td>
<td>2-16</td>
</tr>
<tr>
<td>large-parallel</td>
<td>240:00:00</td>
<td>120gb</td>
<td>2-64</td>
</tr>
<tr>
<td>class</td>
<td>2:00:00</td>
<td>64gb</td>
<td>1-64</td>
</tr>
<tr>
<td>commercial</td>
<td>1008:00:00</td>
<td>360gb</td>
<td>1-128</td>
</tr>
<tr>
<td>daytime</td>
<td>4:00:00</td>
<td>16gb</td>
<td>1-4</td>
</tr>
<tr>
<td>express</td>
<td>01:00:00</td>
<td>500mb</td>
<td>1</td>
</tr>
<tr>
<td>special</td>
<td>1008:00:00</td>
<td>700gb</td>
<td>1-100</td>
</tr>
</tbody>
</table>
Statewide Network

- Alabama Research and Education Network (AREN)
 - Universities & Colleges
 - K-12 School Systems
 - Public Libraries

- State Internet2 Network Operations

- 24x7 Operations Center

- Excellent Statewide Network Infrastructure
Additional ASA Services

- Web & Email Hosting
- Distance Learning
- Disaster Recovery
- Software Development
- Application Server Hosting
 - Alabama Virtual Library (AVL)
- On-Demand Computing
- Economic Development
Summary

- The Alabama Supercomputer Authority provides two high performance computing systems. These are free of charge for use by state funded educational institutions in Alabama.

- The SGI UV is a large NUMA shared-memory system using Intel Xeon CPUs.

- The DMC is a distributed memory system using an Infiniband interconnect and AMD Opteron and Intel Xeon CPUs. The DMC has GPU math coprocessors.

- A variety of software is available.

- ASA also provides network, hosting, and software development services to the academic community.
Alabama Supercomputer Authority
Historical Perspective

Cray X-MP 1987
Cray C90 1994
SGI Altix 350 2004
Altix 450 2006
SGI UV 2000 2012

An eternity in computer years

9 node network
nCube 1991
Cray SV1 1999
Cray XD1 2004
DMC 2008

640 node network
Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th>DMC</th>
<th>SGI UV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of CPUS</td>
<td>1800</td>
<td>268</td>
</tr>
<tr>
<td>CPU Type</td>
<td>Xeon / Opteron</td>
<td>Xeon</td>
</tr>
<tr>
<td>SPECFP / core</td>
<td>11.2 – 19.4</td>
<td>24.375 – 34.75</td>
</tr>
<tr>
<td>Relative processing capacity</td>
<td>3.6</td>
<td>1.0</td>
</tr>
<tr>
<td>Memory (GB)</td>
<td>10,136</td>
<td>4,160</td>
</tr>
<tr>
<td>Internal Disk (TB)</td>
<td>225</td>
<td>2.2</td>
</tr>
<tr>
<td>Shared Disk (TB)</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>GFLOP</td>
<td>16,462</td>
<td>5,194</td>
</tr>
<tr>
<td>Clock (GHz)</td>
<td>2.26, 2.3, 2.4</td>
<td>2.4, 2.9</td>
</tr>
</tbody>
</table>
Who uses HPC?

University of Alabama in Huntsville

Alabama State University

University of South Alabama

University of Alabama

University of Alabama at Birmingham

Auburn University

Athens State University
Auburn University -Montgomery
Bevill State College
Jacksonville State University
Troy University
Tuskegee University
University of West Alabama
University of Montevallo
U.S. Air Force
U.S. Army
NASA
Intel Corporation
Operon Biotechnologies
Time Domain

University of Alabama

Auburn University

Alabama A&M University

HPC