
Using Git For Development���

	

Shantanu Pavgi, pavgi@uab.edu	

UAB IT Research Computing	

Outline	

•  Version control system	

•  Git	

•  Branching and Merging 	

• Workflows	

•  Advantages 	

Version Control System (VCS)	

•  Recording changes to files and maintaing
associated metadata 	

•  Copy or tar command with timestamps 	

•  Types	

•  Centralized	

•  Distributed 	

Centralized vs Distributed VCS	

Reference: http://progit.org/book/ch1-1.html 	

Git 	

•  Git is a free & open source, distributed version
control system designed to handle everything from
small to very large projects with speed and efficiency.	

•  Tool for maintaining your work history	

•  Used by:	

•  Linux Kernel	

•  Android	

•  Ruby on Rails	

•  Reference: http://git-scm.org	

Advantages 	

•  Works off-line	

•  Fast	

•  Easy or cheap branching	

•  Public and private work histories 	

•  Rewrite or curate history before making it public	

•  Repositories can talk to each other 	

•  Flexibility in workflows 	

Commits	

•  Tracks content and not
files	

•  Allows you to stage
changes	

•  Each commit is a
complete snapshot of all
staged files 	

•  Unique 40 character hash
for each commit	

working
directory	

staging 	

area	

git 	

repository	

add	

commit	

Local operations 	

checkout	

Commits	

•  Snapshot 	

•  Committer’s name and email address 	

•  Parent commits 	

•  Commit message 	

Branching	

•  Branch: Line of
development	

•  ‘master’ branch is the
default 	

•  Create branches to have
isolated lines of
development	

A 'head' is a named reference to a commit object - e.g. branches and tags. A repository
can contain any number of heads, however it points to only one 'head' at a time. This
'current head' is called HEAD.

Branching	

•  Branch: Line of
development	

•  ‘master’ branch is the
default 	

•  Create branches to have
isolated lines of
development	

A 'head' is a named reference to a commit object - e.g. branches and tags. A repository
can contain any number of heads, however it points to only one 'head' at a time. This
'current head' is called HEAD.

Branching	

2bc3d4	

 e26a2f	

9ff2b8	

7f3bcd	

time	

*master	

abc123	

f32dc5	

(root)	

123abc	

ticket-4	

HEAD	

Merging	

2bc3d4	

 e26a2f	

9ff2b8	

7f3bcd	

time	

*master	

abc123	

f32dc5	

(root)	

123abc	

ticket-4	

HEAD	

def234	

Branching and Merging	

•  Allows switching contexts 	

•  Diverge from main line of development or stable
code in a clean manner 	

•  Separate space for experimentation and bug fixes	

•  “Local” - private commit history 	

•  Rewrite or curate history before publishing it or
merging into other branches	

Workflows	

•  Distributed model and cheap branching allows
numerous types of workflows 	

•  Push model: Centralized repository type	

•  Pull model: Integration manager type 	

•  ‘git workflows --help’	

•  Read more in ProGit book 	

Workflow: Solo	

Shantanu’s Repo	

commit	

checkout	

Workflow: Solo	

Shantanu’s Repo	

commit	

checkout	

Official	

or	

Public	

Repo	

push	

pull	

Workflow: Centralized	

Shantanu’s Repo	

commit	

checkout	

Official 	

or	

Public	

Repo	

push	

pull	

John’s Repo	

commit	

checkout	

pull	

push	

Workflow: Integration
Manager	

Workflow: Integration
Manager	

Shantanu’s Repo	

commit	

checkout	

Official	

or	

Public	

Repo	

push	

pull	

John’s Repo	

commit	

checkout	

pull	

pull	

Workflow: Integration
Manager	

Shantanu’s Repo	

commit	

checkout	

Curtis’s Repo	

commit	

checkout	

Official	

or	

Public
Repo	

pull	

push	

pull	

John’s Repo	

commit	

checkout	

pull	

pull	

pull	

pull	

Learn More..	

•  http://progit.org	

•  http://help.github.com	

•  http://eagain.net/articles/git-for-computer-
scientists/	

•  Subversion folks: http://git.or.cz/course/
svn.html	

•  git man pages 	

MOTD	

• Use Git	

•  Works off-line 	

•  Personal logbook 	

•  Curate and publish history 	

•  Flexibility in workflows	

• UABgrid docs: 	

 http://docs.uabgrid.uab.edu/wiki/UsingGitForDevelopment 	

Additional Information	

Git Installation	

•  Linux	

•  Package managers 	

•  Source	

•  Windows	

•  http://code.google.com/p/msysgit/ 	

•  Mac:	

•  Source	

•  Homebrew: http://mxcl.github.com/homebrew/ 	

Add-on tools	

•  Access control: gitosis and gitolite	

•  GUI: gitk	

•  Display branch name is shell: http://
www.jonmaddox.com/2008/03/13/show-your-git-
branch-name-in-your-prompt/	

Rewriting History	

•  Remove sensitive data from repository 	

•  Rewrite commits - commit messages, committer
names, timestamps and committed files	

•  Rewriting changes commit hash	

•  DON’T rewrite commits of published history unless
absolutely necessary 	

•  Commands: rebase and filter-branch	

Official
Repo	

git.uabgrid	

Shantanu’s	

Published

Repo	

on Cheaha	

John’s	

Published

Repo	

on Cheaha	

Shantanu’s	

Private
Repo	

on Cheaha	

Curtis’s	

Published

Repo	

on Cheaha	

Curtis’s	

Private
Repo	

on laptop	

Distributed repository model	

Git Objects	

Reference: http://progit.org/book/ch9-2.html	

Repository Size and Packfiles	

•  Each commit is a complete snapshot	

•  Packs up several blob objects 	

•  Creates index file(s) and pack file(s)	

•  Latest commit includes a complete copy	

•  Older commits contain deltas	

•  git gc - cleanup and optimization	

•  References:	

•  http://progit.org/book/ch9-4.html	

•  http://book.git-scm.com/7_the_packfile.html	

Git with large files	

•  Limitations: 	

•  Compression 	

•  Checksums 	

•  Deltas 	

•  Memory 	

•  http://caca.zoy.org/wiki/git-bigfiles - few hundred MB	

•  http://git-annex.branchable.com/ - tracks content/files without
checking it in 	

Git with binary files	

•  Configurable with external diff tool 	

•  Create a new type according to file extension 	

•  Configure diff tool for the new type	

•  Details: http://progit.org/book/ch7-2.html 	

Best Practices 	

•  Work in a private and non-tracking local branch 	

•  Granular commits - easier to squash commits
together than split commits	

•  Fetch and merge 	

•  Create ticket or issue specific branches 	

Git or Mercurial	

• Google’s analysis: 	

• http://code.google.com/p/support/wiki/DVCSAnalysis 	

• Answer to Google’s analysis: 	

• http://felipec.wordpress.com/2011/01/16/mercurial-
vs-git-its-all-in-the-branches/	

• Speed and size: 	

• http://draketo.de/proj/hg-vs-git-server/test-
results.html 	

Git or Mercurial	

•  Language	

•  Git: C and Perl	

•  Mercurial: Python 	

•  Syntax	

•  Branches 	

•  Community 	

Transport protocols	

•  git	

•  SSH 	

•  http(s)	

Community Support	

•  http://vger.kernel.org/vger-lists.html#git 	

•  irc://irc.freenode.net/git 	

•  http://letmegooglethatforyou.com/ 	

Acknowledgments 	

•  David Shealy 	

•  John-Paul Robinson	

•  Bill Bradley 	

•  Mike Hanby	

•  Poornima Pochana, 	

•  Thomas Anthony 	

Questions???

