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Version Control System (VCS)	



•  Recording changes to files and maintaing 
associated metadata 	



•  Copy or tar command with timestamps 	



•  Types	



•  Centralized	



•  Distributed  	





Centralized vs Distributed VCS	



Reference: http://progit.org/book/ch1-1.html 	





Git 	



•  Git is a free & open source, distributed version 
control system designed to handle everything from 
small to very large projects with speed and efficiency.	



•  Tool for maintaining your work history	



•  Used by:	



•  Linux Kernel	



•  Android	



•  Ruby on Rails	



•  Reference: http://git-scm.org	





Advantages 	



•  Works off-line	



•  Fast	



•  Easy or cheap branching	



•  Public and private work histories 	



•  Rewrite or curate history before making it public	



•  Repositories can talk to each other 	



•  Flexibility in workflows 	





Commits	



•  Tracks content and not 
files	



•  Allows you to stage 
changes	



•  Each commit is a 
complete snapshot of all 
staged files 	



•  Unique 40 character hash 
for each commit	
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Commits	



•  Snapshot 	



•  Committer’s name and email address 	



•  Parent commits 	



•  Commit message 	





Branching	



•  Branch: Line of 
development	



•  ‘master’ branch is the 
default 	



•  Create branches to have 
isolated lines of 
development	



A 'head' is a named reference to a commit object - e.g. branches and tags. A repository 
can contain any number of heads, however it points to only one 'head' at a time. This 
'current head' is called HEAD. 




Branching	



•  Branch: Line of 
development	



•  ‘master’ branch is the 
default 	



•  Create branches to have 
isolated lines of 
development	



A 'head' is a named reference to a commit object - e.g. branches and tags. A repository 
can contain any number of heads, however it points to only one 'head' at a time. This 
'current head' is called HEAD. 




Branching	
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Merging	
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Branching and Merging	



•  Allows switching contexts 	



•  Diverge from main line of development or stable 
code in a clean manner 	



•  Separate space for experimentation and bug fixes	



•  “Local” - private commit history 	



•  Rewrite or curate history before publishing it or 
merging into other branches	





Workflows	



•  Distributed model and cheap branching allows 
numerous types of workflows 	



•  Push model: Centralized repository type	



•  Pull model: Integration manager type 	



•  ‘git workflows --help’	


•  Read more in ProGit book 	





Workflow: Solo	
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Workflow: Solo	
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Workflow: Centralized	
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Workflow: Integration 
Manager	





Workflow: Integration 
Manager	
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Workflow: Integration 
Manager	
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Learn More..	



•  http://progit.org	



•  http://help.github.com	



•  http://eagain.net/articles/git-for-computer-
scientists/	



•  Subversion folks: http://git.or.cz/course/
svn.html	



•  git man pages 	





MOTD	



• Use Git	



•  Works off-line 	



•  Personal logbook 	



•  Curate and publish history 	



•  Flexibility in workflows	



• UABgrid docs: 	



  http://docs.uabgrid.uab.edu/wiki/UsingGitForDevelopment 	





Additional Information	





Git Installation	



•  Linux	



•  Package managers 	



•  Source	



•  Windows	



•  http://code.google.com/p/msysgit/  	



•  Mac:	



•  Source	



•  Homebrew: http://mxcl.github.com/homebrew/ 	





Add-on tools	



•  Access control: gitosis and gitolite	



•  GUI: gitk	



•  Display branch name is shell: http://
www.jonmaddox.com/2008/03/13/show-your-git-
branch-name-in-your-prompt/	





Rewriting History	



•  Remove sensitive data from repository 	



•  Rewrite commits - commit messages, committer 
names, timestamps and committed files	



•  Rewriting changes commit hash	



•  DON’T rewrite commits of published history unless 
absolutely necessary 	



•  Commands: rebase and filter-branch	
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Distributed repository model	





Git Objects	



Reference: http://progit.org/book/ch9-2.html	





Repository Size and Packfiles	



•  Each commit is a complete snapshot	



•  Packs up several blob objects 	



•  Creates index file(s) and pack file(s)	



•  Latest commit includes a complete copy	



•  Older commits contain deltas	



•  git gc - cleanup and optimization	



•  References:	



•  http://progit.org/book/ch9-4.html	



•  http://book.git-scm.com/7_the_packfile.html	





Git with large files	



•  Limitations: 	



•  Compression 	



•  Checksums 	



•  Deltas 	



•  Memory 	



•  http://caca.zoy.org/wiki/git-bigfiles - few hundred MB	



•  http://git-annex.branchable.com/ - tracks content/files without 
checking it in 	





Git with binary files	



•  Configurable with external diff tool 	



•  Create a new type according to file extension 	



•  Configure diff tool for the new type	



•  Details: http://progit.org/book/ch7-2.html 	





Best Practices 	



•  Work in a private and non-tracking local branch 	



•  Granular commits - easier to squash commits 
together than split commits	



•  Fetch and merge 	



•  Create ticket or issue specific branches 	





Git or Mercurial	



• Google’s analysis: 	



• http://code.google.com/p/support/wiki/DVCSAnalysis 	



• Answer to Google’s analysis: 	



• http://felipec.wordpress.com/2011/01/16/mercurial-
vs-git-its-all-in-the-branches/	



• Speed and size: 	



• http://draketo.de/proj/hg-vs-git-server/test-
results.html 	





Git or Mercurial	



•  Language	



•  Git: C and Perl	



•  Mercurial: Python  	



•  Syntax	



•  Branches 	



•  Community 	





Transport protocols	



•  git	



•  SSH 	



•  http(s)	





Community Support	



•  http://vger.kernel.org/vger-lists.html#git 	



•  irc://irc.freenode.net/git 	



•  http://letmegooglethatforyou.com/ 	
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Questions??? 


