Condor @ UAB

Expanding the Campus Computing Cloud

Condor Week 2012

John-Paul Robinson jpr@uab.edu
Poornima Pochana ppreddy@uab.edu
Thomas Anthony tanthony@uab.edu

UAB Research Cloud

- Operated by UAB IT Research Computing Group
- 868 cores, three hardware generations, one SGE scheduler
- ~9Tflops compute power, 180TB High performance storage
- Research Storage (40TB and growing)
- Virtual Machine fabric with OpenNebula

https://docs.uabgrid.uab.edu/wiki/Cheaha

UAB Condor Pilot

Can idle desktops help support computationally intense research at UAB?

Dr. Charlie Prince, Assistant VP for Research

- Project Partners
 - UAB IT Research Computing
 - Department of Computer and Information Science
 - UAB IT Desktop Computing
- Science Domain
 - Structural Biology a Molecular Docking workflow

Molecular Docking

- Molecular docking is a method to find the best match between two molecules: a receptor and a ligand
 - representation of the system
 - conformational space search
 - ranking of potential solutions
- Virtual Screening
 - high performance computing
 - large databases of chemical compounds
 - identify possible drug candidates
- Active research area at UAB
- Molecular Docking in Context
 - big for computing but small part of x-ray crystallography workflow
 - http://vimeo.com/7643687 -- Claude Sauter

Autodock

- Automated docking software for predicting optimal ligand-protein interaction
- Uses heuristic search to minimize energy using Lamarkian genetic algorithms or other search like simulated annealing
- GPL Software License

AutoDock http://autodock.scripps.edu

High-Throughput Docking Workflow

- Virtual Screening with Autodock
 - Prepare ligand-receptor coordinate files
 - Calculate affinity grid for the receptor molecule
 - Docking simulation
- Docking Computing Requirements
 - Directly proportional to number of ligands, number of receptors and complexity and flexibility of molecules
 - Our example workflow contains 1088 jobs representing 5436 ligand-receptor dockings

Condor

Features

- Workload management system for compute-intensive jobs that can work independently — "Pleasantly Parallel"
- Developed for "cycle stealing" from idle machines, good for dedicated computing too
- Supported on a large number of systems
- Get started easily with personal instances
- Good for cloud computing, can set up condor pool on Amazon EC2

Community

- Active and engaged developer community
- Broad adoption in many domains
- Freely available under Apache license

Pilot Steps

- Create pilot campus Condor pool
- Understand original molecular docking workflow for SGE HPC cluster
- Convert existing job to work on Condor job scheduler
- Analyze performance on different fabrics
 - UAB Campus Compute Cluster 878 core, production (our control)
 - UAB Pilot Condor Pool 60 core, pilot system
 - U. Wisconsin CHTC Condor Pool 1000+ core, production
 - OSG Engage VO via Condor-G and glide-in WMS 80-100k core, production

Pilot Condor Pool at UAB

- 20 64-bit Linux workstations and Condor master provided by CIS
- 40 32-bit Windows desktops from IT Desktop Services
- Workflow migration, fabric analysis and support by IT Research Computing

Performance and Job Structure

Run-time Distribution per Docking

90% of dockings complete in 15 minutes or less

Static Docking Structure Workflow

- 5 ligands per 1 receptor
- Identical structure for all fabrics

Computing Performance

Summary:

- 1088 compute jobs containing 5 ligands and 1 receptor each
- Each fabric varies in available compute cores and application scales linearly in response
- Campus Condor pool @ CHTC and spare cycles on OSG perform as well as UAB's dedicated compute cluster

Conclusions

Applications

- Condor resources perform as well as campus cluster for high-throughput applications
- High-throughput workflows can scale linearly
- Dynamic workload scheduling could balance jobs

Hardware

- Linux workstations better match scientific computing
- Cygwin makes Windows more useful for scientific
- 64-bit platforms much better than 32-bit platforms

Usability

 Condor makes workflow migration between campus cluster, campus workstations, and national grids easy

Future Work

- Recommend implementation of Condor @ UAB
- Recommend high-throughput workflows adopt Condor instead of SGE
- Leverage spare cycle computing in other areas of infrastructure
- Follow our progress http://projects.uabgrid.uab.edu/condor

Special Thanks

CHTC

- Miron Livny, Brooklin Gore, and Bill Taylor for Condor guidance and access to CHTC Condor pool @ University of Wisconsin
- OSG Engage
 - John McGee and Mats Rynge for access to and support of Engage VO resources on the Open Science Grid
- UAB
 - Larry Owen in UAB Computer and Information Sciences Department, Sterling Griffin and Susan Wells in UAB IT Desktop Services
 - Doug Rigney, Interim VP UAB IT, for on-going support of research computing activities

Additional Autodock Performance Analyses in the Literature

- Ellingson S. et. al. High-Througput Virtual Molecular Docking: Hadoop Implementation of Autdock4 on a Private Cloud (2011)
- Norgan A., et. al. Multilevel Parallelization of Autodock
 4.2 (2011)
- Collingnon B., et. al. Task-Parallel Message Passing Interface Implementation of Autodock4 for Docking of Very Large Databases of Compounds Using High-Performance Super-Computers (2010)
- Huang N., et. al. Benchmarking Sets for Molecular Docking (2006)