NETWORK AND CPU C
HIGH THROUGHPU
ENVIRON

=l®)

A
C

S
=
Z
=
wn

By
James Basney

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCES)

at the
UNIVERSITY OF WISCONSIN —MADISON
2001

© Copyright by James Basney 2001
All Rights Reserved

Abstract

A High Throughput Computing (HTC) environment delivers large amounts of computing capacity
to its users over long periods of time by pooling available computing resources on the network. The
HTC environment strives to provide useful computing services to its customers while respecting
the various resource usage policies set by the many different owners and administrators of the com-
puting resources. Matching jobs with compatible computing resources according to the job’s needs
and the attributes and policies of the available resources requires a flexible scheduling mechanism.
It also requires mechanisms to help jobs to be more agile, so they can successfully compute on
the resources currently available to them. A checkpoint or migration facility enables long-running
jobs to compute productively on non-dedicated resources. The work the job performs with each
alocation is saved in a checkpoint, so the job's state can be transferred to a new execution site
where it can continue the computation. A remote data access facility enables jobs to compute on
resources that are not co-located with their data. Remote data access might involve transferring the
job’'s data across alocal area supercomputer network or awide area network. These checkpoint and
data transfers can generate significant network load.

The HTC environment must manage network resources carefully to use computational resources
efficiently while honoring administrative policies. This dissertation explores the network require-
ments of batch jobs and presents mechanisms for managing network resources to implement ad-
ministrative policies and improve job goodput. Goodput represents the job’s forward progress and
can differ from the job’s allocated CPU time because of network overheads (when the job blocks
on network 1/0O) and checkpoint rollback (when the job must “roll back” to a previous checkpoint).
The primary contribution of this work is the definition and implementation of a network and CPU
co-allocation framework for HTC environments. Making the network an allocated resource enables
the system to implement administrative network policies and to improve job goodput via network
admission control and scheduling.

Acknowledgements

It has been a great pleasure for me to do my research as a member of the Condor group at the
University of Wisconsin. | thank my advisor, Miron Livny, for his support and guidance and for
giving me the opportunity to work on the Condor system with such atalented group of people. | am
indebted to all members of the Condor project for contributing to the system on which | based my
work. | am particularly grateful to Ragjesh Raman, Todd Tannenbaum, Derek Wright, Doug Thain,
Jim Pruyne, and Mike Litzkow for their significant contributions to the Condor system and for their
input on my research.

The Kangaroo system, described in Chapter 3, is joint work with Doug Thain and Se-Chang
Son. The fine-grained bandwidth control, described in Chapter 6 is joint work with Se-Chang Son.

| thank the members of my oral exam committees: Miron Livny, Marvin Solomon, Paul Barford,
Remzi Arpaci-Dusseau, Mukarram Attari, and Mary Vernon. | am grateful for their evaluation of
my work. Their comments have significantly improved the quality of this dissertation.

| aso thank Lorene Webber, Virginia Werner, Marie Johnson, and Cathy Richard for helping
me navigate the University bureaucracy and the Computer Systems Lab staff for maintaining my
computing environment during my work.

| am grateful to the National Center for Supercomputing Applications at the University of 1lli-
nois at Urbana-Champaign for providing me an office from which | worked on this dissertation. Jeff
Terstriep, Mike Pflugmacher, and Tom Roney have been gracious hosts.

Paolo Mazzanti’s work with Condor at Italy’s Nationa Institute of Nuclear Physics provided
inspiration for much of my research. | am grateful to him for that and aso for hosting me in
Bologna while | did some of this work.

| owe a debt of gratitude to Bob Geitz and Rich Salter, my advisors at Oberlin College, for
getting me started in computer science on a solid foundation.

| thank my family for their support during my graduate career, particularly for understanding
why someone would want to say in school for so long.

Most of dl, | am grateful to my wife Sharon Lee for putting up with me throughout this process
and giving me the daily encouragement and support | needed.

Contents

Abstract
Acknowledgements

1 Introduction
1.1 Motivation e
1.2 RemoteEXecution. e
1.3 Thesis Statement and Research Contribution
14 Organization of the Dissertation

2 High Throughput Computing with Condor
21 IntroducCtion
22 Checkpointing o
23 RemoteSystemCalls
24 Classad Matchmaking o o o
25 Summary ..o e

3 Goodput
31 Introduction e e
32 Goodputof aBatchJob
3.3 Improving BatchJob Goodput
3.4 Overlapping /O with Computation
35 Summary ... e

4 Goodput Case Study
41 Introduction L e e e
42 Goodput Index
4.3 CPUAvailability e
44 JobPlacements e
45 Checkpointing e
4.6 SUMMAY . . . oo e e e e

5 Execution Domains
5.1 Introduction e
5.2 Execution DomainsinCondor
5.3 CheckpointDomains e
54 ReaedWork e
55 Summary e

W WP

o0 O O U1 g

6 Network and CPU Co-Allocation
6.1 Introduction e
6.2 AdmissionControl
6.3 Network Manager e
6.4 RelaedWork
6.5 Summary

7 Conclusion
7.1 FutureWOork o e e
7.2 SUMMAY

Bibliography

A Network Management Library
Al Introduction
A.2 Allocation Algorithm
A3 ROULING o e
A4 Network CapaCity o e e

List of Figures

O oOoO~NOOULA WNPEF

W WWWWWWWWNDNMNDNDNNNNNNNRPEPERPRERPERPERPRERPRERERE
O~NO O PR WNPOOO~NODUOPRAARWNPFPOOONOOOPD,WDNEO

RemoteSystem Calls 7
Matchmaking Protocol 8
Job Timeline e 12
Job Timeline (Preemption) 12
Job Timeline (Periodic Checkpoints, Remote I/O, and Preemption) 13
Kangaroo System Overview e 16
Spooling During Job Preemption 17
Multiprogramming Example 18
Goodput INndex e e e 21
Cumulative Distribution of Checkpoint Rollbacks 22
Distribution of Available Computing Capacity 23
Available Condor CPUs (February 2001) oo oo 24
Job Placementsand Preemptions, 25
Job Placements and Preemptionsby Timeof Day 25
Cumulative Digtributions of Checkpoint Sizes 26
Total Daily Checkpoint DataWritten 26
Daily Checkpoint Transfers 27
Checkpoint Transfersby Timeof Day 28
Example Execution Domain Configuration 30
Network and CPU Gang-Matching Protocol 38
Allocating Network Capacity o oo 40
Admission Control ModuleInterface 40
Allocating Network Capacity oo o 41
Router ModuleInterface 42
Scheduler DiagnosticsExample 44
Job Starts With and Without Feedback 45
Network Allocation Architecture 46
Slot Scheduling Example: FirstFit 47
Slot Scheduling Example; Earliest Completion 48
Slot Scheduling Example: Shortest Duration 48
Slot Scheduling Example; Greedy Reservation 48
Slot Scheduler Performance 49
Shutdown BeforeDeadline 50
Shutdown Event With Pre-Copying oo 51
ExampleRouting Table 67
Example RoutesfromFigure35 67
Another ExampleRouting Table 68

Example Routesfrom Figure37 68

Chapter 1

| ntroduction

1.1 Motivation

Many users are unsatisfied with the computing capacity delivered by asingle server, be it a desktop
computer or supercomputer. The user’'s computational needs may simply be greater than the ca-
pacity of the server, or the server may be oversubscribed such that the user can obtain only a small
fraction of its resources. At the same time, other servers may sit idle [40]. These users can benefit
from some form of distributed computing, enabling them to harness additional computing capacity
available on the network.

To distribute a computation manually, the user must choose the execution site, transfer any
required data to that site, launch the computation, and collect the results when the computation
completes. The user chooses the execution site from the set of servers where he or she has an
account based on static server characteristics, including expected availability and performance, and
current server load, obtained from a network information service or by probing the state of each
server. If the servers do not share acommon file service, the user must manually distribute the data
for the computation to the execution site using a file transfer mechanism and manually retrieve the
output when the computation compl etes.

Manually distributing jobs quickly becomes unwieldy as the number of jobs or potential ex-
ecution sites grows. A distributed job scheduler frees the user from the burden of choosing the
execution site and manually launching the computation. Users need not be aware of the state of
the resources in the system or which resources are allocated to the job. The job scheduler locates
resources compatible with each job and allocates resources to jobs according to a performance goal,
such as minimizing weighted job response time or maximizing total system throughput. The sched-
uler can use load information gathered from the available execution sites to quickly choose the best
execution site based on current conditions.

The scheduler manages the allocation of resources to implement administrative policies (such
as user and group priorities) and to ensure that resources are not oversubscribed. For example, if
aserver's memory is oversubscribed, performance can degrade significantly due to virtual memory
thrashing, where CPU utilization drops because jobs are blocked on paging activity. One solution to
the oversubscription problem, called space sharing, is to alocate resources (or resource partitions)
to jobswhen they are scheduled. The user indicates the job’'s resource requirements when submitting
the job to the system, or the system predicts the job’s resource requirements based on previous
experience with similar jobs. The job scheduler locates the required resources and allocates them to
the job. If the job exceeds its resource allocation, the scheduler suspends it until its resource needs
can be met with a larger alocation. While the job is suspended, its resources may be allocated

2

to other jobs. The scheduler can aso monitor resources for indications of oversubscription (for
example, high paging rates and low CPU utilization) and incrementally decrease the load on the
oversubscribed resource, by suspending or migrating jobs, until performance improves.

The main goal of a space sharing scheduler is to effectively alocate primary resources to jobs,
such asthreads of execution on a CPU, memory space, and disk space. The scheduler must consider
many resource characteristics in determining which resources can potentially service ajob, includ-
ing relatively static characteristics such as CPU architecture, operating system version, and mounted
file systems as well as dynamic performance and load metrics. Additionaly, diverse and complex
policies may be associated with the resources in the distributed system. For example, resources
may be available to different job types at different times of the day, and each resource’s policy may
prioritize jobs and users differently, depending on who owns that particular resource. The scheduler
must often address issues of resource fragmentation aswell, packing jobs into the available memory
and disk space at aserver and packing parallel jobsinto the available CPUsto minimize unallocated
resources.

An important secondary scheduling god is to ensure that allocated resources are in fact used
efficiently. Efficient use of the primary resources can be afunction of the performance of secondary
resources, such as remote servers (for example, network file servers), as well as memory, disk, and
network bandwidth. Unlike the allocated partitions of the primary resources, these secondary re-
sources are shared with other jobs or users. Other processes running at the same execution site will
compete with the job for memory and disk bandwidth, and processes at many execution sites may
compete for bandwidth on a shared network or for service from a shared remote server. Allocation
of these secondary resources can achieve similar benefits to allocation of the primary resources,
namely, to police access to the resources according to administrative policies and to ensure that
resources are not oversubscribed. Oversubscription of these secondary resources reduces the effi-
ciency of the primary resource allocations because jobs spend more time waiting for bandwidth or
remote service and thereby take longer to complete.

1.2 Remote Execution

Distributing jobs to servers on the network results in remote execution, where data and other re-
sources required for the job’'s execution are not present locally on the execution site. In some
systems, jobs are submitted from a front-end node, and the job’s data must be transferred between
the front-end node and the alocated compute node during execution. Long-term disk allocations
at execution sites are often limited, so jobs with large datasets must transfer their data between a
mass storage facility and allocated scratch disk space at the execution site during their run. When a
shared network file system isused, thejob’s data must be transferred between the network file server
and the execution node, using either direct remote procedure call style operations (asin NFS[72])
or viaalocal disk cache (asin AFS[30]). In computational grid environments [23, 63, 64], ajob
often must provide its own remote data access mechanisms [7, 24, 67, 68] to transfer data between
the home site and the allocated remote site, because the job can make few assumptions about the
computing environment provided at the remote site.

Datatransfer can be characterized as acost of remote execution. Jobs must pay this cost to obtain

3

the benefit of the additional computing capacity available on the network. If the job is charged for
network or file server usage, then data transfers can have a direct cost. If the job is charged for
its allocated CPU time, any data transfers that cause the job to block have an associated CPU cost,
because the job is charged for the CPU even though it is not using it while the transfer is being
performed. Even if CPU and network resources are free, the data transfer can add a utility cost in
terms of increased job run-time. Intelligently managing remote data access in a remote execution
environment can reduce these costs, allowing the system to deliver greater computing throughput to
its users.

1.3 Thesis Statement and Research Contribution

This dissertation explores the efficiency of compute jobs in distributed systems by focusing on the
network costs of remote execution. As resources become more distributed and 1/0O requirements
grow, data movement on the network presents significant challenges for the efficient use of compute
resources.

The thesis of this work is that scheduling and allocating network transfers in a distributed job
scheduling system can significantly improve delivered system throughput. We demonstrate this
thesis with the following research contributions.

e We propose a goodput metric [3] to evauate the execution efficiency of jobs in a remote
execution environment.

e We present a profile of scheduling and network usage in the Condor distributed system [37],
deployed in the Computer Sciences department at the University of Wisconsin-Madison, to
understand the network requirements of jobs in the system and to motivate our network man-
agement mechanismes.

e We present a mechanism, called execution domains [4], for clustering compute services on
the network to improve data locality.

e We present an implementation of CPU and network co-allocation in the Condor scheduling
framework [2].

1.4 Organization of the Dissertation

The dissertation proceeds as follows. Chapter 2 presents an overview of the Condor High Through-
put Computing (HTC) environment, in which this research was conducted. We develop our thesis
in further detail in Chapter 3 by describing the network requirements of remote execution in a dis-
tributed system and presenting our goodput metric for evaluating the network efficiency of remote
job execution. Chapter 4 presents a case study of execution efficiency in the Condor job scheduling
system deployed at the University of Wisconsin. Then, in Chapter 5, we present asimple mechanism
for improving data locality in job scheduling environments and show how we can apply this mecha-
nism in the Condor resource management environment. Chapter 6 presents the primary contribution

4

of this dissertation, a network and CPU co-allocation framework for HTC environments, and de-
scribes an implementation of the framework in the Condor resource management system. Chapter 7

concludes the dissertation with a summary of our contributions and a discussion of possible future
work.

Chapter 2

High Throughput Computing with
Condor

2.1 Introduction

In this chapter, we give an overview of the Condor High Throughput Computing environment [37],
which served as the platform for the research presented in this dissertation. A High Throughput
Computing (HTC) environment [42] strives to provide large amounts of processing capacity over
long periods of time by exploiting the available computing resources on the network. The HTC
system must meet the needs of resource owners, customers, and system administrators, since its
success depends on the support and participation of each of these groups. Resource owners donate
the use of their resources to the customers of the HTC environment. Before they are willing to do
this, the owners must be satisfied that their rights will be respected and the policies they specify
will be enforced. Customers will use the HTC environment to run their applications only if the
benefit of additional processing capacity is not outweighed by the cost of learning the complexities
of the HTC system. System administrators will install and maintain the system only if it provides a
tangible benefit to its users which outweighs the cost of maintaining the system.

Resources on the network are often distributively owned, meaning that the control over pow-
erful computing resources is distributed among many individuals and small groups. For example,
individuals in an organization may each have “ownership” of a powerful desktop workstation. The
willingness to share aresource with the HTC environment may vary for each resource owner. Some
resources may be dedicated to HTC, while others are unavailable for HTC during certain hours or
when the resource is otherwise in use, and still others which are available to only specific HTC
customers and applications. Even when resources are available for HTC, the application may be al-
lowed only limited access to the components of the resource and may be preempted at any time. Ad-
ditionaly, distributed ownership often results in decentralized maintenance, when resource owners
maintain and configure each resource for a specific use, further increasing resource heterogeneity.

The Condor environment addresses these challenges with three primary mechanisms [41]:
checkpointing, remote system calls, and classad matchmaking. Each of these mechanisms has im-
portant implications for scheduling and allocating network transfers. The checkpointing mechanism
allows Condor to save a snapshot of ajob’s state so it can preempt that job and migrate it to a new
execution site. These snapshots can be large, and transferring them between execution sites can
generate significant network load. The remote system call mechanism allows Condor to present a
friendly environment for jobs running on remote execution sites by forwarding system calls that can
not be serviced at the execution site to the job’s home node for processing, providing transparent

6

access to remote data for Condor jobs and enabling monitoring and control of the job’s behavior
at the remote site. The classad matchmaking mechanism provides the powerful scheduling mecha-
nisms required for harnessing heterogeneous, distributed computing resources. We will seein later
chapters that the flexibility of the matchmaking framework enables the clustering and co-allocation
mechanisms we have developed. We present additional details about each of these mechanismsin
the following sections.

2.2 Checkpointing

A checkpoint is a snapshot of the current state of an application that can be used to restart the
application from that state at alater time, potentially on adifferent machine. Checkpointing enables
preempt-resume scheduling. If the scheduler decides to no longer allocate a CPU to an application,
the scheduler can checkpoint the application and preempt it without losing the work the application
has already accomplished. The scheduler can then resumethe application at alater timewhen aCPU
is available. Preempt-resume scheduling is essential in an HTC environment for implementing the
resource allocation policies specified by resource owners and for alocating resources fairly to long-
running jobs. The scheduler preempts running jobs to allocate resources to higher priority jobs and
when resources are removed from availability. A checkpoint can be transferred over the network to
implement process migration. Checkpointing also provides fault tolerance, allowing an application
to restart from the most recent snapshot in the event of a service interruption.

Condor provides user-level, transparent checkpointing [36]. A job linked with the checkpoint
library can be checkpointed at any time by sending it a checkpoint signal. The signa hander,
installed by the checkpoint library, writes the job’s state to afile or network socket. Checkpointing
parameters can be set at run-time, allowing the checkpoint destination and compression optionsto be
chosen immediately before performing each checkpoint. The checkpoint contains the entire memory
state of the job, aswell as additional information about open files, pending signals, and other process
attributes, so jobswith large memory image sizes generate large checkpoints. Disk space for storing
these large checkpoints may not be available locally at the execution site. Checkpoint servers can
be deployed around the network to provide dedicated checkpoint storage space. Chapter 5 presents
amechanism for localizing checkpoint transfers to and from checkpoint servers.

2.3 Remote System Calls

Condor’s remote system call mechanism, illustrated in Figure 1, exports the job’s home environment
to the remote execution site, so jobs need not be re-written to cope with the heterogeneity inherent in
the HTC environment. Condor jobs can be linked with a remote system call library that interposes
itself between the job and the operating system [31] at the system call interface. When the job
performs a system call, the system call library can redirect the call to a server, called the shadow,
running in the job’s home environment.

Some system calls, such as memory alocation calls, are always performed localy and never

Remote
Home Execution
Environment Site

i Shadow) Remote System
: @ ' Remote Procedure Calls Call Library

Figure 1. Remote System Calls

redirected to the shadow. Other calls, such as timezone or user identity lookups, are aways redi-
rected to the shadow, so it appears to the job that it is running in its home environment, instead of
running in aguest account in a potentially different timezone.

The remote system call mechanism allows the shadow to control how the job accesses files at
the remote execution site. When the job opens afile, the remote system call library makes a request
to the shadow for instructions on how the file should be accessed. The shadow chooses if the library
should access the file using remote procedure calls back to the shadow, local file access on the
execution site, or a connection to a file server on the network, and the shadow provides a filename
trandation to the library when necessary. The shadow may choose local access for afileto improve
performance if the file has been staged locally at the execution site or is available directly from the
execution site using a distributed file system. The shadow can aso choose to enable buffering or
compression in the remote system call library for each file.

Trapping system calls in the remote system call library allows the shadow to monitor and con-
trol the job’s behavior. The shadow sees many of the job’s system calls directly because they are
redirected to the shadow for execution. For calls that are not redirected, the library can provide
callbacks to the shadow to keep the shadow informed of the job’s behavior and to allow the shadow
to control local system calls as well. The shadow can record statistics about the job's run to be
presented to the user and can monitor the job’s resource consumption to detect if the job’s resource
alocation should be modified. The checkpoint and remote system call libraries can be integrated
to provide callbacks to alow the shadow to control the job’s checkpointing as well. The clustering
and co-alocation mechanisms presented in later chapters will use this functionality to implement
resource management policies for running jobs in the shadow.

Resource
Offer

)

Resource Match

Notification

Resource
Requester

Resource
Provider

Figure 2: Matchmaking Protocol

2.4 Classad Matchmaking

Job scheduling in Condor is implemented with the classad matchmaking framework [56, 57]. The
matchmaking architecture consists of resource providers, resource requesters, and a matchmaker.
Resource all ocation follows athree step protocol. Entitiesfirst advertise resource requests and offers
in the classad language to the matchmaker. The matchmaker executes the matchmaking algorithm
to locate compatible resource requests and offers and notifies the advertising entities when a match
isfound. The requester then contacts the providers directly to claim their resources. The requester
and provider may perform additional negotiation in the claim step, and either party may decide
not to complete the allocation. If the allocation succeeds, the entities actively maintain the claim
relationship during the alocation’s lifetime to monitor and update the allocation’s status. Either
entity may sever the relationship at any time, depending on the policies and the service guarantees
negotiated between them. Claim monitoring can aso include a keep-alive mechanism to detect if
one of the entities has failed. This protocol isillustrated in Figure 2.

The classad language uses a semi-structured data model, so there is no fixed schema for the
representation of resource requests and offers. Each resource request or offer contains a set of at-
tribute definitions which describe the request or the offered resource. They each also contain a
Requi r enent s expression which specifies the compatibility between requests and offers and a
Rank expression which indicates preferences. To locate a match between a request and an of-
fer, the matchmaking agorithm evaluates the offer's Requi r enent s expression in the context
of the request and the request’s Requi r enent s expression in the context of the offer. If both
Requi r enent s expressions evauate to Tr ue, the classads are successfully matched.

The Condor matchmaker executes the matchmaking algorithm periodically. The agorithm or-
ders resource requests according to customer priorities and searches for the best matching resource
offer (i.e., the offer which the request’'s Rank expression ranks the highest), for each resource re-
guest in turn. Resource requests represent arequest from a customer agent to run ajob, and resource
offers represent an offer from a compute server to run ajob. A successful match and claim therefore
resultsin a job placement on the matched compute server. The matchmaker supports a preemption

9

policy expression, configured by the Condor administrator. A job can be matched with a claimed
compute server only if the preempting job’s owner has higher priority than the preempted job’'s
owner and both the compute server’s local policy and the matchmaker’s preemption policy expres-
sion alow the preemption. In this case, the running job is preempted during the claim protocol so
the preempting job can start running in its place.

24.1 Gang-Matching

Until recently, matchmaking in Condor was strictly bilateral, as described above: matches occurred
between a job and a compute server. However, some environments can benefit from co-allocation
of multiple resources. For example, jobs in a distributed system may require a software license to
run. Software license managers can limit the number of licensed applications running at any time
and can control where software licenses may be used. The resources in the distributed system may
have heterogeneous license configurations. some compute sites may have an unlimited use license,
others may have alicense limiting the number of running application instances, and others may have
no license at al for a given application. Network-based licenses are not tied to specific servers but
instead control the usage of an application across anetwork domain. Managing such an environment
requires co-allocation of licenses and servers, to ensure that jobs run only when and where there is
alicense available for them.

Recent research [55, 58] has defined the gang-matching model, which extends the matchmaking
framework to support co-allocation. The advertisement specification is extended to support a dock-
ing paradigm, to specify the relationships between entities in a match. Each advertisement defines
an ordered list of labeled ports. Each port specifies a request for a bilateral match, so multilateral
match requests are indicated by including multiple ports in the advertisement. The gang-matching
algorithm searches for classads that can successfully “dock” at arequest’s ports such that the bilat-
era constraints specified for each port are satisfied.

A naive implementation of the gang-matching algorithm that enumerates all possible combina-
tionsin search of a successful gang-match quickly becomes untenable because of the combinatorics
involved. Gang-matching research to-date has therefore focused on performance optimizations to
make the gang-matching algorithm feasible in practice. Promising classad indexing and heuristic
search strategies have been developed [55].

We developed the network and CPU co-allocation framework presented in Chapter 6 concur-
rently with the gang-matching research, and we have strived to make our work compatible with
the gang-matching model. While the gang-matching research focused on the general co-allocation
problem, we have explored issues specific to co-alocating network and CPU resources and eval-
uated network and CPU co-allocation strategies that can be implemented in the gang-matching
framework. The remaining work required to integrate these two effortsis detailed in Section 7.1.

24.2 Flocking

As described above, resource requesters obtain matchmaking services by simply advertising their
resource requests to a matchmaker, making it convenient for users to participate in the distributed
system remotely. Users can configure alocal job manager to submit resource requests to a“remote’

10

matchmaker (in a different administrative domain, across a wide-area network), and assuming the
user has sufficient priority and permission, the matchmaker will match the job’s resource requests
with resource offers in its domain. Using remote system calls, the user’s jobs can transparently
access the user’s files while running at the remote compute sites.

A job manager that submits resource requests to multiple matchmakersissaid to beflocking, i.e.,
grouping many “condors’ together into a“flock” of resources that can be harnessed to run the user’s
jobs. Flocking extends the pool of resources available to the user. When there are insufficient re-
sources available to satisfy the user’s requests, the job manager sends regquests to more matchmakers
until the user’s resource needs are satisfied or until al known matchmakers are consulted.

Theflexibility provided by the flocking mechanism enables users to harness increasingly remote
resources, making it more important to manage the efficiency of remote execution. Flocking jobs
between administrative domains requires more data movement across longer network distances.
Managing that data movement is the subject of this dissertation.

25 Summary

Checkpointing, remote system calls, and matchmaking are three fundamental services provided by
the Condor system to meet the challenges of distributed ownership and resource heterogeneity. Each
of these services has important implications for the network efficiency of remote execution. Check-
point transfers and remote system calls can generate significant network load, and matchmaking
makes it easier for users to harness resources distributed over longer network distances. In the fol-
lowing chapters, we will examine the network load in the Condor system, present mechanisms we
have devel oped to improve remote execution efficiency in Condor, and describe how these mecha
nisms can be applicable in other contexts.

11

Chapter 3

Goodput

3.1 Introduction

The term goodput is used in the study of computer networks to describe the rate at which datais
successfully received at the destination of a network stream [1, 59]. Goodput differs from the low-
level throughput of the network stream due to lost or discarded data packets (i.e., “badput”) and
protocol overheads.

goodput = throughput — badput — overheads D

In the general sense, goodput isameasure of the service received at ahigher system level, compared
to the raw throughput measured at a lower level. It is a measure of the amount of useful work
accomplished by the system and how efficiently system resources were used to accomplish that
work.

The goodput versus throughput distinction can be applied to CPU alocations as well. Job
scheduling systems often charge users for the elapsed wall clock time of their CPU alocation.
However, users are not generaly interested in the amount of wall clock CPU time they obtain.
Instead, they areinterested in the amount of work their jobs have accomplished. We define agoodput
measure for CPU alocations in an attempt to understand the difference between the allocated CPU
throughput and the amount of useful work accomplished by users' jobs.

For CPU intensive jobs, we can define goodput as the accumulated CPU time of the job and
compare CPU time to wall clock time. However, this definition can not be applied to other job
classes. We can also define goodput in terms of application-specific metrics, like the number of
simulation events processed or frames rendered. However, we prefer a measure in units of time so
we can directly evaluate the efficiency of the system.

For the purposes of this study, goodput is equal to the time it would take to execute ajob using
local, dedicated compute resources. The badput and overheads introduced by the job scheduler are
afunction of the use of distributed or non-dedicated resources. This definition is somewhat subjec-
tive, since the distinction between local and distributed and between dedicated and non-dedicated
resources is not always clear. The distribution of computing resources ranges from internal mem-
ory and I/O busses to crossbar supercomputer interconnections to high speed loca area networks
to wide area networks. Likewise, the spectrum of dedicated to non-dedicated computing resources
ranges from systems where the job competes only with system processes to systems where the job
is guaranteed some level of service (with some level of confidence—no system can make absolute
guarantees) to systems where the job may be preempted at any time. Therefore, when we apply
the goodput measure to a system, we a so define the boundary between the benchmark environment
(local, dedicated resources) and the system environment (remote or non-dedicated resources).

12

Submit Schedule Complete

| | — - - ! |
I T f 1 1

Queueing Placement Execution Cleanup

Figure 3: Job Timeline

Submit Schedule Preempt Schedule Complete
x | | - — | | | -——
{ T [— T T [
Queueing Placement Execution Check- Queueing Placement Execution Cleanup
point

Figure 4: Job Timeline (Preemption)

3.2 Goodput of aBatch Job

We begin with a description of the factors that determine the goodput of batch jobs. A batch job
is submitted to a queue where it waits until the scheduler can find resources available to run it.
When the scheduler decides to run a queued job, it must first “install” the job on the allocated
compute resource before the job can begin execution, during the job placement phase. In an early
batch system, the placement phase would require loading the job from a card or tape reader. In
current batch systems, the placement phase often requires loading the job’s data from a front-end
submission node to a compute node over a network. Once the placement is complete, the job
begins its execution. When the job’s execution compl etes, the job enters a cleanup phase, where the
scheduler transfers the job’s output to the front-end node (or to the printer in early batch systems)
and deallocates the disk resources associated with the job on the compute node. The phases of
batch job execution are illustrated in Figure 3. The job’s goodput occurs in the execution phase
(shown in bold in the figure). The queueing, placement, and cleanup phases are overheads of the
job scheduling environment. |If the job were instead run on local, dedicated resources, it would not
need to wait in aqueue for resources to become available or wait for its data to be transferred to and
from a compute node.

The scheduler may terminate the job’s resource allocation before the job completes (called pre-
empting the job), when for example the job exceeds its resource allocation (by running too long
or using too much memory) or if the system must be shutdown for maintenance. Preempt-resume
schedulers also preempt jobs to give resources to higher priority jobs. Schedulers on non-dedicated
resources will preempt jobs when the resource is reclaimed by its owner. When possible, the job’s
intermediate state is saved in a checkpoint when the job is preempted, allowing the job to continue
execution from where it |eft off when it obtains a new allocation. Figure 4 shows an example of a
job that is preempted during itsrun. A job’s run may include many execution phases interrupted by
preemptions. To continue execution from the checkpoint, the checkpoint data must be transferred
to the new execution site during the placement of the job.

If the job is unable to checkpoint its state when preempted, the work it has accomplished at the
execution site will be lost and must be redone (i.e., it is badput), analogous to a dropped network
packet that must be retransmitted. Not al jobs on al systems can be checkpointed. Only some op-
erating systems support process checkpointing. User-level checkpointing services [35, 36, 52] often

13

Schedule Preempt
e —t—{— { = {
Placement Execution Check- Execution Check- Execution Check-

point point point

== Remotel/O

Figure 5: Job Timeline (Periodic Checkpoints, Remote I/O, and Preemption)

require the job to be re-linked with a checkpointing library (often not possible for commercial appli-
cations) and checkpoint only a subset of system state (for example, inter-process communication is
often not fully supported). In some cases, jobs implement their own checkpoint/restart functionality
to work around these restrictions.

Evenif thejob isableto checkpoint, it may not have the time or resourcesit needsto successfully
complete a checkpoint. The batch system may preempt the job by immediately killing it without
warning, or the job may have alimited amount of time to evacuate all resources at the execution site
upon receiving a preemption natification. If the job can not transfer its checkpointed state over the
network in that time, the checkpoint will be lost.

The job’s execution can aso be interrupted for remote data access and periodic checkpointing.
In many cases, it isnot possible to anticipate al of the data required by the job during the placement
phase. Additionally, local disk resources on the execution site may be limited, so the job can not
store al of its data locally during execution. In these cases, the job will need to access data from
remote sources during its run using a remote 1/0 library [7, 24, 41] or a network file system such
as NFS [72] or AFS [30]. The job may also interrupt its execution periodically to save its state in
a checkpoint to guard against system failures. In particular, periodic checkpoints can guard against
losing too much work if the job is unable to checkpoint when preempted. Figure 5 illustrates how a
job’s execution can be interrupted by remote /O and periodic checkpointing.

3.3 Improving Batch Job Goodput

The goal of this work is to improve the goodput delivered to batch jobs. We want jobs to use
allocated computational resources efficiently to improve job response time, improve overall system
throughput, and enable users to get more computing done with smaller alocations. A batch job’s
goodput is determined by two factors. the amount of time the job waits on synchronous network
operations (placement, cleanup, checkpoint transfers, and remote I/O) during its allocation and the
amount of lost work due to failures, including a failure to checkpoint when preempted.

goodput = throughput — network wait time — lost work 2

Lost work is directly related to the efficiency of checkpointing in the system. Reducing the
amount of time or resources required to perform a checkpoint can improve the success rate of pre-
emption checkpoints. For example, if the system gives jobs a limit of one minute to checkpoint
when they are preempted, then faster checkpointing will enable more checkpoints to complete be-
fore the deadline. Additionaly, if we can make periodic checkpoints less expensive, then they can
be performed more frequently, resulting in less work lost when a failure occurs.

14

We present two techniques for improving goodput. Thefirst isto overlap 1/0 with computation
whenever possible. The second is to schedule network 1/0 to improve the performance of large
I/O operations. Scheduling network 1/0 is important for two reasons. First, it can increase the
system’s ability to overlap 1/O with computation. Second, when it is not possible to overlap 1/0
with computation, scheduling can improve the performance of synchronous 1/0. We begin with a
discussion of two standard techniques for overlapping 1/0 with computation.

3.4 Overlapping I/O with Computation

Overlapping 1/0 with computation to improve performance is not a new idea [28]. Traditional
approaches include spooling and multiprogramming [65]. Spooling interposes ahigher performance
intermediate storage device between the job and itslower performance data sources and targets. The
spooler transfers the job’s input data from the data source to the intermediate storage in advance of
its execution. The job performs al 1/0 to the intermediate storage device, and the spooler transfers
the job’s output data from intermediate storage to its final destination. In this way, the job offloads
blocking 1/0O operations to the spooler. In contrast, multiprogramming keeps the CPU busy by
alocating the CPU to an idle job when the running job blocks on an /O operation. The job still
blocks on 1/0O, but it relinquishes the CPU when it can not use it to make forward progress. We
consider spooling and multiprogramming in more detail below.

3.4.1 Spooling

The concept of spooling evolved from the operation of early batch processing systems. The punched
cards for many jobs were assembled into a batch and the batch was read onto magnetic tape by an
inexpensive peripheral computer. The operators transferred the tape to the main computer, which
read the jobs from tape, executed them sequentialy, and wrote their output to another tape. The
operator then transferred the output tape to another peripheral computer which printed the tape’'s
contents. Spooling systems (from Simultaneous Peripheral Operations On Line) were introduced
to automate peripheral operations, so human operators did not need to transfer tapes between the
peripheral and the main computers. The computer ran a reader and a writer program in addition to
the compute job (using multiprogramming). The reader program would read input data for the next
job(s) from punch cards to tape (or later, to disk) while a job was running, and the writer would
move job output from tape (or disk) concurrent with the job’s execution.

Modern operating systems implement a form of spooling in the file system buffer pool. When
an application issues a read request to the operating system, the operating system reads a block
from disk into a memory buffer and returns the requested data to the application. File blocks are
cached in the buffer pool so that later requests to previously read disk blocks can be satisfied directly
from memory. The application writes data to the memory buffer and continues processing, and the
operating system commits the data to disk asynchronously. Distributed file systems, such as AFS,
use local disk buffers to spool data from remote file servers.

15

3.4.1.1 Spooling Input

In general, spooling input requires some form of advance prediction or planning to ensure that the
job's input data is available in the spooler’s buffers when it is requested. Prediction can occur at
two levels in the batch job environment. At the file access level, the job’s future read requests are
predicted based on past read requests. For example, read-ahead predicts that the job will access afile
sequentially. When the job requests afile block, the I/0 system also schedules reads for the next few
blocksin thefile. At the job scheduling level, the scheduler loads input datafor ajob at the compute
site before launching the job. To do this, the scheduler must choose the compute site for the job in
advance of the job’s execution. In multi-server systems, this requires a prediction of future server
availability, including when currently running jobs will complete. Priority inversion can result if
the system predicts poorly, with high priority jobs waiting for servers that are not available when
predicted while lower priority jobs run on servers that are available earlier than expected. Predicting
when running jobs complete requires an estimate of the remaining run-time of each job. One “rule
of thumb” for estimating job run-times based on a study of job lifetime distributions is that the
median remaining lifetime of aprocessis equd to its current age [27, 33].

Enforcing run-time limits on jobs can limit the penalty for mispredicting run-times. Users sub-
mit their jobs to queues with configured run-time limits, choosing the appropriate queue based on
their own estimates of their jobs behavior. The scheduler can then use these run-time limits as
worst-case run-time estimates for currently running jobs. A significant drawback to run-time lim-
its, however, is that users often find it difficult to accurately predict their jobs run-times, so they
overestimate to avoid job preemptions [19], particularly for jobs that are not checkpoint-enabled.

In a dynamic resource environment, such as a cluster of non-dedicated workstations, the ef-
fectiveness of spooling input data can be limited because of the difficulty of predicting resource
availability. In addition to uncertainty about job run-times, there are no guarantees that a compute
resource will be available to run the next job when the previous job completes. The resource can
potentially drop out of the pool at any time when it is reclaimed by its owner for another purpose.
Likewise, compute resources can join the pool at any time, making it impossible to overlap the
placement of thefirst job on anewly available compute resource with computation on that resource.

It can also be difficult for users to give information about their jobs' file access patterns in
advance. Thejob’s /O requirements may depend on the inputs for the run and the results of complex
calculations in the job. However, read-ahead strategies [12, 18, 45, 50] can still be useful in these
cases. The job'sfirst access to afile will be synchronous, but later sequential accesses to the same
file can be serviced from speculatively pre-fetched data blocks in the spooling area.

3.4.1.2 Spooling Output

Spooling output can be much simpler than spooling input, in that it does not require any advance
prediction or planning. One concern, however, is the fate of spooled data when the job terminates
or is preempted. Ideally, the job should release its CPU allocation when it terminates, and any re-
maining spooled output data should be transferred from the execution site by the spooler as network
resources permit. Just as input spooling requires a disk allocation at the execution site in advance
of the CPU allocation, output spooling potentially requires the disk allocation to persist beyond the

16

Execution Site

Storage Site

Kangaroo
Server

Destination

Figure 6: Kangaroo System Overview

end of the CPU dlocation. If the job must quickly vacate all resources at the execution site when
preempted, some of the job’s spooled output may be lost. Thisis similar to afailed checkpoint: the
job must rollback and reproduce the lost output.

Kangaroo [66] is an example of asimple user-level mechanism for spooling batch job output to
overlap 1/0O with computation and hide network errors. Asillustrated in Figure 6, clients connect to
the Kangaroo server to issue block file read and write requests. The server satisfies read requests
for local files by reading the requested file block and sending it in areply to the client. Likewise,
the server satisfies local write requests by writing the requested file block to disk. For writes to
remote files, the server hands the requests over to the Kangaroo mover by writing each file block
to aloca spool directory, acknowledging the client’s request, and notifying the mover that a new
block is ready. The mover is responsible for reliably sending spooled file blocks over the network
to the destination server. For reads of remote files, the server first checks the local spool directory
to seeif the request overlaps with any previously written but uncommitted data. If the read can not
be satisfied from the local spool directory, the server forwards the read request to a remote server
running on the remote host and forwards the server’s reply to the client.

Kangaroo gets its name from the fact that data “hops’ through intermediate servers and buffers
on its way to the destination. In the scenario described above, data in Kangaroo hops from the
application to the local disk buffer and then directly to a remote server where it is committed at
the destination filesystem. The architecture allows for more advanced configurations that route data
through intermediate servers, allowing Kangaroo to take advantage of variations in link capacity
along the network path and to be more resilient to individual link failures.

3.4.1.3 Opportunitiesfor Spooling

Spooling can be used to overlap ajob’s I/O with its own computation or to overlap onejob’s 1/O with
another job’s computation. Thejob itself can implement read-ahead and write-behind buffering with
aseparate thread of execution for spooling. Parallel 1/0 libraries (such as Nexus [22]) can be used to
add this functionality to jobs. When the job completes its execution, it must transfer any remaining
buffered output from the execution site before relinquishing the allocated resource. In many cases,
the remaining output will be minimal, because the spooler thread will have been transferring the

17

Preempt

Job A Running | Checkpointing |

T T T
Job B Queueing Placement Running

Arrival Schedule

Figure 7: Spooling During Job Preemption

job’s output as it was produced. However, the job may perform alarge write at completion time
to report the final results of the calculation. If the job’s output rate is greater than the available
network bandwidth, there can be a significant amount of buffered output remaining at the end of the
job’srun. Ideally we would like to overlap this synchronous I/O at the end of the job’s run with the
execution of another task or job.

The master-worker paradigm [5, 26, 34] provides a promising opportunity for overlap between
asingle user’s tasks or jobs. In a master-worker (MW) application, the master partitions the goal,
assigns a sub-goal to each worker, and receives results when workers complete their assigned tasks.
The master can overlap network 1/0 with computation by sending data for the next work-step to a
worker before that worker has completed its current work-step. When the worker completes awork-
step, it uses a separate spooler thread to send the results back to the master. The compute thread(s)
begin processing the next work-step immediately upon completing the previous work-step. The
master can use application-specific knowledge to schedule work-steps effectively.

The job scheduler can overlap the I/O of one job with another without advance planning during
preemption. When the scheduler preempts alower priority job for ahigher priority job, the schedul er
can spool the input data for the higher priority job before evicting the lower priority job. When the
higher priority job is ready to run, the scheduler starts it and evicts the lower priority job. The
timeline for this case isillustrated in Figure 7, where higher priority job B preempts lower priority
job A. This strategy is most effective when both jobs fit in memory at the execution site. Otherwise,
when the new job starts, the jobs will compete for memory while the preempted job is checkpointing.

Previous work has shown that spooling techniques can be applied to reduce migration costs.
Pre-copying [69] uses a copy-on-write mechanism to first save a checkpoint of the job’s state while
it continues running. Then, after the initial concurrent checkpoint is written the application is sus-
pended and any memory pages modified since the concurrent checkpoint are transferred again.
Copy on reference [15, 79] alows an application to begin execution on a destination workstation
before all memory pages have been transferred. When the application references a page which has
not yet been restored, the page fault handler first reads the page from the network and then alows
the memory reference to proceed. Memory pages may be optimistically prefetched to reduce the
latency of synchronous page transfers.

3.4.2 Multiprogramming

Multiprogramming relies on the ability to context switch between jobs at an execution site. Load
balancing schedulers run multiple jobs per CPU, leveraging the multiprogramming services pro-
vided by the local operating system at each execution site. Load sharing schedulers, on the other
hand, allocate one or more CPUs exclusively to one job and do not typically implement any form

18

Blocking
1/0 Request Data Ready
Job A Running | Suspended | Running
I I I I
Job B Queueing Placement Running Checkpointing
Schedule

Figure 8: Multiprogramming Example

of multiprogramming. However, load sharing systems could also potentialy benefit from multi-
programming for large 1/O events. The challenge is that implementing multiprogramming at the
load sharing layer has greater overhead, because starting and stopping jobs is more costly than local
process context switches.

Figure 8 illustrates an example of multiprogramming in a load sharing system. Job A issues a
read request on afile that currently resides on “distant” storage (for example, a tape archive or re-
mote ftp server). Upon receiving the request, the remote /O service determines that the request will
block for along time. For example, aquery to the tape archive indicates that the fileis currently not
staged to disk or the remote ftp server is currently unreachable. Job A suspends and/or checkpoints
itself and allows its CPU(s) to be alocated to job B until the file can be retrieved. When the fileis
ready, job A wakes up and preempts job B. Since the checkpoint of one job can be overlapped with
the computation of the other, the primary cost of the context switch is the placement cost of job B.
If this placement cost is significantly lower than the time the job is expected to block waiting to
retrieve the distant file, then switching the jobs will improve system goodput. Multiprogramming at
this level preserves the exclusive CPU allocations provided by the load sharing system to maximize
performance rather than requiring that the job share its CPU with other jobs throughout its lifetime,
asin load balancing systems. The job relinquishes the CPU only when it knows it will not be able
to useit for asignificant period of time.

3.4.3 Need for Network Scheduling

As described above, techniques for overlapping I/O with computation can significantly improve the
goodput obtained by batch jobs. However, there are limitations to the effectiveness and applicability
of spooling and multiprogramming techniques in real systems. Baoth techniques require additional
buffering (in memory or on disk) at the execution site. When the buffer space is exhausted, remotely
executing jobs must resort to synchronous remote 1/0 techniques. In dynamic environments, where
resources frequently switch between available and unavailable states, prediction for input spooling
is very challenging. If CPU availability can not be predicted, then the scheduler must perform
synchronous placements when CPUs become available. Likewise, if resources may be reclaimed by
their owners at will, jobs may have limited time for checkpointing.

For these reasons, network scheduling can play an important role in improving the effectiveness
of techniques to overlap 1/0 with computation and can improve the performance of synchronous
network 1/0 when the techniques can not be applied. For example, network reservations can help
the scheduler ensure that data for the next job will be ready at the compute site before the previous
job is expected to finish. The scheduler can aso prioritize network traffic to improve goodput. For

19

example, synchronous network 1/O, such as blocking reads to a remote server, should take priority
over asynchronous write-behind of spooled data, assuming sufficient buffer space at the compute
site.

3.5 Summary

We have presented a goodput metric for measuring the efficiency of remotely executing batch jobs,
reviewed standard techniques for overlapping 1/0 with computation, and described examples where
these techniques can be applied in distributed job scheduling systems. 1/0 and computation overlap
is not always possible due to the inability to predict future system state and to limited buffer space.
In later chapters, we investigate scheduling techniques that do not rely on overlap to improve the
efficiency of network 1/0. In the next chapter, we provide further motivation for the goodput metric
by presenting performance statistics gathered in a production Condor installation.

20

Chapter 4

Goodput Case Study

4.1 Introduction

In this chapter, we examine the factors that effect goodput in the Condor pool at the University of
Wisconsin-Madison Computer Sciences department. We present statistics gathered over atwo and a
half year period. In that time, the size of the pool has grown from 300 to over 500 CPUs, in part due
to the addition of 192 dedicated Intel Linux CPUs. The pool aso includes approximately 100 non-
dedicated lab workstations that are rebooted nightly and 200 non-dedicated desktop workstations
for graduate students, professors, and departmental staff.

Significant network upgrades were performed during this period. At the start of the period, the
machines were distributed between about 20 10 Mbps Ethernet subnets and 10 100 Mbps Ethernet
subnets. The subnets were linked by a subset of the department’s eight routers, which each provided
approximately 30 Mbps throughput to a switched 155 Mbps ATM backbone. Since then, most
machines were moved from 10 Mbps to 100 Mbps Ethernet networks, and the subnets were linked
by a single backbone router capable of routing at link speeds.

4.2 Goodput Index

To evaluate the goodput delivered in the Condor pool, we implemented a “goodput index” by sub-
mitting a small number of representative jobs and monitoring their performance. The goodput index
functions like an index in the stock market. Focusing on the performance of a small number of rep-
resentative jobs gives an indication of the overall behavior of the system and allows comparisons
of system behavior over time. In adistributed system like Condor, it can be difficult to gather and
analyze statistics for al jobs in the system, particularly when jobs cross administrative domains
using flocking. The data gathered for the index jobs can show how system changes (in policy con-
figuration, job workload, and available resources) effect the goodput of different types of jobs.

We constructed the index by submitting 10 jobs with checkpoint sizes of 4, 24, 48, 96, and
180 MB between July 1998 and March 1999, to represent jobs that would run efficiently on the
32, 64, 128, and 256 MB workstations available in the Condor pool. Each job simply executed a
busy-loop and did not perform any file I/O. The jobs' logs recorded how long each job ran at each
execution site, when the job successfully checkpointed, and how much CPU time was saved in each
checkpoint. From the logs, we computed the “badput” for the jobs as the difference between the
job'’s run-time and saved CPU time. The badput has two components. work lost due to checkpoint
rollbacks (i.e., when the job is unable to checkpoint when preempted, so work since the last check-
point islost) and low CPU utilization of checkpointed work due to remote execution overheads. The

21

25% , . |

badput —+—
overhead ---x---
rollback ------

20%

15% L I — _
10% _

5% | |

oo

,, K- -
Qo R il * ;

Checkpoint Size (MB)

Figure 9: Goodput Index

total “badput” recorded for these jobs is plotted as a percentage of total run-time in Figure 9. The
figure also plots the remote execution overhead (the percentage of the allocated CPU time that went
unused) and the percentage of the job’s run-time that was lost due to checkpoint rollbacks.

Thefigure shows that all jobs used less than 90% of their alocated CPU time (i.e., the overhead
for each job is over 10%). We believe that most of this overhead is caused by Condor’s suspend
policy. When interactive activity is detected on a workstation, Condor suspends the job instead of
immediately preempting it. If the interactive activity is short-lived, the job can be resumed, avoiding
the overhead of preempting and re-scheduling the job. Jobs can be suspended frequently if there
is intermittent interactive activity on a machine for long periods of time. Further evaluation of the
suspend policy and its impact on system efficiency was beyond the scope of our study but would be
worthwhile future work.

The figure shows an additional increase in badput for the jobs with larger checkpoints. Two
factors account for this. First, the jobs with larger checkpoints spent more time saving and restoring
their checkpointed state, accounting for an additional 8% of badput for the job with a 180 MB
checkpoint compared with the 4 MB job. Second, we see an increase in work lost due to checkpoint
rollbacks for the jobs with larger checkpoints. Rollbacks accounted for less than 1% of the 4 MB
job’s badput, but the 180 MB job lost approximately 4% of its run-time to checkpoint rollbacks.
During this time, we frequently saw throughputs of 3 Mbps or lower for individual checkpoint
transfers to the checkpoint server, causing transfers of 180 MB checkpoints to take over 8 minutes.
Condor was configured with a 10 minute preemption window, so jobs that took longer than 10
minutes to checkpoint were killed, accounting for 70% of the large job’s failed checkpoaints.

Two additional causes of checkpoint rollbacks are apparent from the cumulative distributions
shown in Figure 10. Over 85% of all rollbacks resulted in less than 10 minutes of lost work. This
is explained by the fact that Condor was configured to checkpoint only those jobs that have run for
at least 10 minutes. Jobs that were preempted within 10 minutes of startup were killed without a
checkpoint because the cost of checkpointing was seen to outweigh the benefit of saving the small
amount of work. Because only a small amount of work was lost in each case, those rollbacks
accounted for under 20% of the lost work. A second cluster of checkpoint rollbacks appears at the 3
hour mark. Condor jobs performed periodic checkpoints every 3 hours. Unfortunately, the periodic
checkpoint process was dlightly error prone and would cause the job to abort and rollback under

22

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

O% J/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
Lost Work (CPU Minutes)

Total Rollbacks
ITotall Lo§t th)rk T

Figure 10: Cumulative Distribution of Checkpoint Rollbacks

some circumstances. Even though this error occurred very infrequently, it accounted for another
20% of the lost work because 3 hours of work was lost each time.

In summary, we saw approximately 12% badput related to checkpoint transfers for large jobs:
8% caused by the overhead of performing synchronous transfers of large checkpoints and 4% caused
by checkpoint rollbacks. We have seen greater badput levels at sites that do not allow jobs to
checkpoint when preempted (i.e., the job is immediately killed to avoid any interference with the
workstation owner). For example, a set of jobs running in the Condor pool at the University of
Bologna, where jobs were not allowed to checkpoint when preempted, lost over 25% of their run-
time to checkpoint rollbacks. Increasing the frequency of periodic checkpoints can help increase
goodput in these environments.

4.3 CPU Availability

We monitored keyboard activity for all non-dedicated hosts in the Condor pool between November
1999 and April 2001 to profile the capacity available to be harnessed by Condor jobs. Condor jobs
only run on lab and desktop workstations when they are not in use by interactive users, according
to keyboard activity and load average. We define an idle period to be a time interval between
keystrokes of duration greater than 15 minutes. We logged al idle periods for 566 hosts during
the monitoring experiment (241 lab workstations and 325 desktop workstations). Some hosts were
online for only a part of the monitoring time.

Figure 11 presents cumulative distribution plots for the workstation idle times. Overal, the
hosts were idle 75% of the time. This agrees with an earlier study that found more than 70% of
workstation capacity in the department went unused by workstation owners [48]. As a group, the
lab workstations are significantly less idle than the desktop workstations, and the lab workstations
are never idle for more than 24 hours because of the daily scheduled reboots. We categorize each
idle period as either short (less than one hour), medium (between one and three hours), or long
(greater than 3 hours). 51% of the idle periods lasted one hour or less, accounting for 7% of total
idle time. 25% of the idle periods lasted more than three hours, accounting for 83% of total idle
time.

23

100%
90% 1
o 80% R
S 0% .
= (]
2L 60% i
=l
5 50% -/ R
8 40% | .
2 7
& 30% g
X 20% g
10% R
0%
0 50 100 150 200 250 300 350 400 450 500 550 600
Workstations
100% T T T T T T L=
90% - e e T 1
80% |- R
w T0% .
8 60% | g
& s50% | .
S 40% - g
T 30% | —
20% overal| ——— 4
desktop -------
10% lab R
0% 1
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Duration (Hours)
100%
90% |
80% |-
70%
2 60%
E 50% |-
S 40% |
30%
20% |
10% -
0%

o
[N
N
w
IN
o
o
~
©

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Idle Period Duration (Hours)

Figure 11: Distribution of Available Computing Capacity

The large number of short idle periods has important implications for the goodput in the system.
The system can potentialy expend a significant amount of network resources chasing the last 7%
of capacity delivered from the short idle periods. If we can predict the future availability of CPU
resources, we can avoid paying too high a cost for those short alocations. Previous work [47]
explored simple predictors of future availability in the Condor system with promising results. Future
availability was accurately predicted based on availability in the same hour on the previous day
(accounting for weekday vs. weekend patterns) and on recent availability. Selecting the workstation
that had been available the longest was shown to cause fewer preemptions than random selection.

The Network Weather Service [75] provides sophisticated performance forecasting using time-
series analysis. In one study [76], the NWS made short term (10 seconds) and medium term (5
minutes) predictions of CPU performance with a reported typical mean absolute error of less than

24

100% T T T T T T T T T T T T T
90%
80%
70%
60%
50%
40%
30%
20%
10%

0% 1 1 1 1 1 1 1 1 1 1 1 1 1

5 6 7 8 9 10 11 12 13 14 15 16 17
Day of Month

CPUsAvailable

=
o]

Figure 12 Available Condor CPUs (February 2001)

10%, where error was computed as the difference between the predicted CPU performance and the
performance obtained by atest process.

We have added some simple support for future availability prediction into the current version of
the Condor system. Condor’s description of each machine now includes how long that machine has
been available to run jobs, the length of the machine’s last interval of availability, the percentage of
time that machine has been available over its lifetime in the system, and Condor’s own prediction
of the machine's future availability based on past history and a configured level of confidence. If
the machine's current period of availability is A seconds and the level of confidence is L%, Condor
predicts that the machine will be available for another P seconds, where L of the past available
intervals greater than A were P seconds in duration or longer. If there were no previous intervals
greater than A, Condor simply predicts P = A x (2.0 — L). Jobs are free to use any combination of
these availability statistics in choosing their execution site.

Figure 12 plots the percentage of available CPUs in the Condor pool for two weeksin February
2001. Daily cyclesof CPU availability are clearly present. CPU usage increases steadily from about
8 AM to adaily peak at 4 PM, with another smaller increase later in the evening. Two sharp drops
in the number of available CPUs occur each morning, first around 2 AM when the Windows lab
workstations are rebooted and then again at 4 AM when the Unix lab workstations are rebooted.

4.4 Job Placements

Figure 13 plots the number of job placements and preemptions initiated by the Condor matchmaker
between November 1998 and April 2001. The matchmaker preempts a job when it decides to run
a higher priority job in its place. Job preemptions caused by resources becoming unavailable (for
example, a workstation owner reclaiming the workstation) are initiated locally at the execution
site without the matchmaker’s involvement and so they are not included in these statistics. The
upper plot illustrates that the number of job placements per day varies between 500 and 43000,
with a median of 4279 job placements per day (i.e., approximately 3 per minute). Frequent job
placements can generate significant load on the network. For example, 3 placements per minute
for jobs that have 64 MB of data (on average) will generate an average of 25 Mbps of placement

25

45 T T T T T T T
0L Job Placements
Job Preemptions -------
35 R
30 | B
25
20
15 |-
10 | | B

Daily Totals (thousands)

, . i i
PR il ll, U A i . oo
b TS O o TN P gty YTl 02 s L1 7 AT Hud;r A gyttt "Uﬁ‘ (Xt) r\" L o Y] \.*MN“ o

121 23 45 6 7 8 91011121 23 45 6 7 8 91011121 2 3 4
1998 1999 Month 2000 2001

Figure 13: Job Placements and Preemptions

140 T T T T T T T T T T T T T T T T

" Job Placements
120 - Job Preemptions ------- B

Daily Average (10 min periods)

0 irufinlimﬁ]f»‘| k1iw:1;—:1r:ﬂf:ﬂl’bﬁ| Vﬁl - |ﬁ ; 1 1 >7I | Jhlr b‘lﬁxil:r ;I _“—T“L:LJ“
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

Figure 14. Job Placements and Preemptions by Time of Day

traffic. On average, about 18% of these scheduled job placements preempt alower priority job. The
frequency of job placements varies significantly from day-to-day according to the job workload.
Large numbers of short-running jobs submitted to the system can generate significant spikes in
scheduling activity, as seen, for example, in September 2000.

Figure 14 illustrates how the number of job placements and preemptions varied throughout
the day in the first quarter of 2001. The number of job placements and preemptions increased
during work hours, when workstation activity increases, causing CPUsto frequently switch between
available and unavailable states. A spikeinthe number of job placements occurred after 5 AM, when
the lab workstations completed their reboots.

45 Checkpointing

Condor job checkpoints include the job’s entire memory image. We see checkpoint sizes range
from 1 MB to over 512 MB. Checkpoint sizes have been increasing in the pool as the memory
available on workstations in the department increases, as illustrated in the cumulative distribution
plots in Figure 15. In 1998, over 97% of all checkpoints written were under 64 MB in size. That
percentage decreased to 76% in 1999, 69% in 2000, and 51% in 2001. Interestingly, there was a

26

100% T e T T

90% E
o 80% :
% 70% :
= 60% —
B S0% [7
8 40% f/ N
X Ea
B 30% 2001 —— A
O 20% pf 2000 ------- B

1034 | o]

0% 1 1 1 1 1 1 1

0 64 128 192 256 320 384 448 512
EC pomt ze
Checkpoint Size (MB

100% e

90% E
S 80% :
&
O 70% E
=
£ so% i
g
T 50% E
5 4% -
T 30% 2001 —— A
2 20% %888 ******* .

10% /o 1998]

0% L= 1 1 1 1 1 1 1

0 64 128 192 256 320 384 448 512

Checkpoint Size (MB)

Figure 15: Cumulative Distributions of Checkpoint Sizes

r—TT7TT 7T T

300 | 1
250 1
200 | 1
150 - I

891011121234567891011121234567 8 91011121 2 3 4
1998 1999 Month 2000 2001

Total Ckpt Data Written Daily (GB)

Figure 16: Total Daily Checkpoint Data Written

greater percentage of checkpoints over 192 MB in 1999 and 2000 than seen so far in 2001.

Figure 16 graphs the daily total amount of checkpoint datawritten by Condor jobs to the check-
point servers, showing the general trend in increased checkpoint traffic, as checkpoint sizes and the
number of CPUs in the pool increase. It is not uncommon to see over 50 GB of checkpoint writes
in one day, for an average checkpoint write load of over 5 Mbps.

A Condor job will only read the same checkpoint more than once if there is a rollback, so
comparing checkpoint write traffic to checkpoint read traffic can give insight into the goodput of the
Condor pool. A job will fail to successfully read or write a checkpoint if its allocation is terminated

27

Successful Reads
Successful Writes -------

Daily Total Ckpt Transfers

Month (2001)

400 T

Failed Reads
g B0 Failed Writes ------- H
% L i
g 300
= 250
Qo
S 200 g
iol
5 150 - 4
'_
> 100 m i
®
O 50} i
0 e o 2
1 2 4

Month (2001)

Figure 17: Daily Checkpoint Transfers

before the checkpoint is completely read or written or if there is a checkpointing error, so failed
checkpoint writes are asign of rollback and failed checkpoint reads are a sign that some allocations
are shorter than the job placement time. Figure 17 showsthe daily total number of checkpoint reads
and writes to the main checkpoint server, both successful and unsuccessful, for thefirst three months
of 2001. There were more checkpoint reads than writes in 35% of the days shown the upper graph,
signalling a potentially significant amount of lost allocation time due to checkpoint rollbacks. An
investigation of the Condor logs found two problems causing Condor jobs to abort after reading a
checkpoint: missing data files and corrupt checkpoints. Condor kept attempting to restart the jobs
each time they failed, causing the large number of additional checkpoint reads. These errors can
generate significant badput in the pool, because CPU and network resources are alocated to jobs
that keep failing shortly after startup.

The lower graph shows over 3000 failed checkpoint reads and 15000 failed checkpoint writes.
A failed checkpoint read occurs when ajob is preempted before it has finished reading its check-
point. Since the job has not begun computing in this case, it simply aborts the checkpoint restore
and vacates the execution site immediately. An investigation of the Condor logs shows two causes
for the failed checkpoint writes. In many cases, the job was unable to establish a connection to the
checkpoint server (after the job’s resource manager initiated the transfer request), either because of
anetwork error or because of high server load, resulting in arequest timeout appearing in the logs.
The remaining checkpoint writes failed because the job was killed by the workstation owner for tak-
ing too long to complete its checkpoint when preempted. As part of this study, we added a module

28

20 T
18
16
14
12
10

Daily Average Ckpt Writes
(20 min periods)

N A O ©

TR R T TR NN NN TN TR NN N SR SR NN NN SR SN S SN S SN R SR |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

Figure 18: Checkpoint Transfers by Time of Day

to the CondorView tool to display checkpointing statistics for a pool, so users and administrators
can use the statistics to detect and diagnose these types of problems.

Figure 18 shows the average number of checkpoints written throughout each day in the first
quarter of 2001. The Bezier curve plotted with the data shows that checkpointing traffic increases
by approximately 25% during business hours (8-17), when jobs are preempted more often by work-
station owners. Thereisalso an increase later in the evening. Thiscurveismirrored by the keyboard
activity statistics presented above in Section 4.3. The large number of checkpoints after 4 AM re-
sulting from the daily lab workstation reboots are clearly shown. Note that the 2 AM reboots don’t
appear in the graph because Condor is not yet able to checkpoint Windows jobs.

46 Summary

We have presented a profile of the Condor pool in the University of Wisconsin-Madison Computer
Sciences department. Weillustrated the difference between allocated throughput and obtained good-
put with asimple set of “goodput index” jobs. Significant idle computing capacity isavailableinthe
network, but short idle periods provide diminishing returns because of the overheads of job setup
and teardown. Changes in workstation availability and job workload can generate large scheduling
events with high network load.

The profile illustrates that the efficiency of a distributed job scheduling system can vary dra-
matically based on available capacity, workload, and scheduling policies. When job placement and
migration are inexpensive, the system can schedule aggressively to harness all available computing
capacity. Jobs can run efficiently on workstations that will be available for only a short time and can
migrate away immediately at the first sign of workstation owner activity. However, when network
overheads increase, because of large checkpoints or a large number of CPUs relative to available
network capacity, the high network load can significantly impact goodput, due to increased blocking
on network 1/0 and an increase in checkpoint rollbacks. In the following chapters, we present two
mechanisms we have developed to improve execution efficiency in these types of environments.

29

Chapter 5

Execution Domains

5.1 Introduction

In this chapter, we present a mechanism called execution domains [4] that we have developed to
improve data locality in job scheduling environments by “clustering” compute nodes based on ac-
cess to data resources. Execution domains ensure that jobs that require a given level of accessto a
data resource run at compute sites that can provide the needed access. If ajob’s input datais stored
on a network file server, execution domains ensure that the job runs only on CPUs with reliable,
high-speed access to that network file server. For jobs that produce large volumes of output, ex-
ecution domains ensure that the job runs only on CPUs with access to sufficient storage capacity
for the job’s output. If the job produces large intermediate state (for checkpointing or out-of-core
computation), execution domains ensure that, once the job begins its execution using a storage de-
vice, it migrates only among CPUs with high-performance access to that storage device. Since data
resources may not be accessible from all CPUs in a wide-area computationa grid for system ad-
ministration and security reasons, execution domains are useful even for jobs that can tolerate low
data rates, to ensure that the job only runs on CPUs with some type of access to the job’s data. An
execution domain may be empty if a dataset is not yet available. Jobs that require the dataset will
not run until it is produced, so execution domains can also serve as a mechanism for controlling
data dependencies between jobs.

An execution domain is aset of CPUswith adefined level of accessto aphysical or logical data
resource. Levels of access may be defined according to performance, network distance, reliability,
security, or other criteria. Execution domains may be defined at different access levels for a given
dataresource. However, aCPU isamember of at most one execution domain for each dataresource.
A dataresource may be aserver or dataset. A server is any data storage device, including network
file servers and database servers. Servers occupy a fixed position on the network and can not be
easily relocated. A dataset is afile or set of files stored on a server. Datasets may be dynamically
replicated and migrated between servers on the network. Figure 19 illustrates an example execution
domain configuration. Domains A, B, and C are each defined by their proximity to a set of data
servers. Asillustrated, alogical execution domain may include multiple physical servers. Domain
D, which overlaps with the other domains, is defined by copies of adataset staged on the local disks
of four CPUs.

Domain managers are responsible for defining execution domain membership and maintaining
the affinity between jobs and the execution domains of their data. We propose two types of domain
managers. domain migration agents and data staging agents. The domain migration agent schedules
the initial placement of job data files on file servers and ensures that jobs run within the execution

30

AO0O0d: 0ooc

- OO@d b @V V Legend:

- vowv: o U -Crus

OV - Servers
:B 0 0 dh . __1- Domains
- 0ooo d - dataset
. OV O

Figure 19: Example Execution Domain Configuration

domains of the file server(s) that store their files. The agent also monitors the demand for and
availability of CPU and network resources in the server domains. If there is an insufficient number
of CPUsin the execution domain of afile server, the domain migration agent can transfer the job’s
data files from the current file server to a server in a domain where more CPUs are available. The
agent can then modify the job’s domain requirements so it will run in the new execution domain. The
data staging agent schedules theinitial distribution of datasets and configures the execution domain
membership for those datasets. The agent also monitors the demand for datasets by watching the
job queues. If there are insufficient CPU and network resources in the execution domain of a dataset
to meet current demand, the data staging agent expands the execution domain. The agent stages a
copy of the dataset on additional storage devices and adds the CPUsin the domains of those storage
devices to the domain of the dataset. Since domain managers are externa to the job scheduler,
they can be used to implement scheduling policies or algorithms that were not anticipated by the
scheduler’'s developers. For example, the domain managers can use network load information to
explicitly schedule data transfers for staging and migration over wide-area links.

5.2 Execution Domainsin Condor

The Condor classad matchmaking framework [56, 57], presented in Section 2.4, enables easy imple-
mentation of execution domains with no changes to the Condor resource management system. Clas-
sad matchmaking gives us the ability to dynamically inject information into the system to achieve
custom scheduling goals.

Domain managers can use the Condor APIs to modify the execution domain definitions and
job requirements. To modify the domain definitions, the domain managers can insert, delete, or
modify attributes in resource offers. When the domain staging agent stores a dataset on the local
disk of aworkstation, it inserts a new attribute for that dataset in the workstation’s resource offer.
When the domain migration agent moves a job’'s data files to a new file server, it modifies the
Requi r ement s and Rank expressions in the job’s resource request so the job will execution in
the domain of the new file server.

For example, the following resource offer describes a Sparc Solaris workstation with 256 MB

31

of memory and a MIPS rating of 200:

OpSys="Solaris2.6”;
Arch ="“Sun4u”;
Memory = 256;

Mips = 200;

To include a workstation’s CPU in an execution domain, the domain manager inserts an attribute
into the resource offer. For example, if this workstation has local access to the cs.wisc.edu AFS
network filesystem, the manager inserts the following attribute:

AFSDomain = “cs.wisc.edu”;

Resource offers with different values defined for the AFSDorrai n attribute describe CPUs in dif-
ferent execution domains. The domain manager also inserts a Boolean attribute for each dataset to
indicate that the CPU is a member of the execution domain of that dataset. For example:

HasDataSetXY Z97S3 = True;

The dataset may be staged differently for different CPUs. It may, for example, be located on the
local disk of some CPUs and available to other CPUs via a network file server. If the jobs that
require this dataset have different 1/O characteristics, it isuseful to define more restrictive execution
domains. The domain manager can define an execution domain that includes only those CPUs with
the dataset staged on the local disk as follows:

HasDataSetXY Z97S3Locally = True;

Jobs that need local-disk access speeds to this dataset should run only in this more restrictive exe-
cution domain. The Condor remote I/O library can be used to hide the different file access methods
from the job. The library instruments the job’s I/O system calls and redirects them to the appropri-
ate file access method. Support for many /O access protocols is under devel opment in the Condor
remote 1/O library, including FTP, HTTP, and GASS|[7].

A job's resource request indicates its requirements and preferences for an execution site. For
example, the resource request below is compatible with the resource offer above. The request asks
for a Sparc Solaris workstation with more than 80 MB of memory, with a preference for the CPU
with the highest MIPSrating (i.e., CPUs are ranked in descending order by their Mips value):

Requirements = (other.OpSys == “Solaris2.6”) &&
(other.Arch ==“Sun4u”) && (other.Memory > 80);
Rank = Mips;

To indicate that the job stores its data files in the cs.wisc.edu AFS filesystem and so should run
in the execution domain of that filesystem for best performance, the domain manager modifies the
Requi r enent s in the job’s resource request:

Requirements = (other.OpSys == “Solaris2.6”) &&
(other.Arch == “Sundu”) & & (other.Memory > 80) &&
(other. AFSDomain == “cs.wisc.edu”);

32

AFS [30] is an example of a globa filesystem, where any file on an AFS server can be accessed
from any AFS client, assuming the user has the necessary credentials, so if this job can tolerate
higher-latency access to its AFSfiles, it could feasibly run on any CPU that serves asan AFSclient.
In this case, the job’s resource request requires only that AFSDonmai n is defined, indicating that the
CPU isan AFSclient. The resource request indicates a preference for the cs.wisc.edu AFS domain,
however, since a CPU in that domain will have the best access to the job’s data files. This example
uses the classad isnt operator to test if an attribute is defined. It also uses the Rank expression, where
avalue of Trueisranked higher than avalue of False.

Requirements = ... && (other. AFSDomain isnt Undefined);
Rank = (other, AFSDomain == “cs.wisc.edu”);

To indicate that the job should run on a CPU in the execution domain of a dataset, the domain
manager modifies the Requi r enent s attribute of the resource request as follows:

Requirements = ... && other.HasDataSetXY Z97S3;

When the job beginsits run, it uses the location attribute in the resource offer to find the dataset on
the workstation. Jobs that require local disk access speeds to this dataset will require a CPU in the
more restrictive execution domain:

Requirements = ... & & other.HasDataSetX'Y Z97S3L ocally;

Other jobs may not strictly require local disk access speeds, but will perform better at higher speeds.
In this case, the domain manager specifies the job’s preferences in the Rank expression of its
resource request (where True is ranked higher than False):

Requirements = ... && (other.HasDataSetXY Z97S3 ||
other.HasDataSetXY Z97S3Locally);
Rank = other.HasDataSetXY Z97S3Locally;

5.3 Checkpoint Domains

We have aso applied the execution domain mechanism to the management of checkpoints in Con-
dor. In our experience, checkpoint transfers are often the main cause of network overhead for
Condor jobs. Asseenin Section 4.5, daily checkpoint traffic in our local Condor pool often exceeds
100 GB. The checkpoint of ajob's state includes its entire memory state, so memory-intensive jobs
can generate large checkpoints. When long-running jobs obtain short CPU allocations, they must
store a checkpoint at the end of each alocation to save the work they have accomplished. Ded-
icated checkpoint servers, deployed across the network, provide storage space for these large job
checkpoints.

To localize the transfer of checkpoints in the network, we define execution domains according
to proximity to checkpoint servers. These checkpoint domains are defined by inserting a Ck pt Do-
mai n attribute into each CPU’s resource offer. Jobs write their checkpoints to a checkpoint server

33

in the current checkpoint domain and are restricted to migrate only to CPUs in the current check-
point domain, to avoid transferring the checkpoint to a CPU beyond the domain. To implement this
policy, the Requi r enent s of thejob’s resource request must specify the checkpoint domain once
the job has written its first checkpoint. For example:

CkptDomain = “ckpt.cs.wisc.edu”;
Requirements = ... && (self.CkptDomain == other.CkptDomain);

A task may begin execution in any checkpoint domain, but once it performs its first checkpoint, it
executes only on CPUsin the chosen checkpoint domain.

Since atask may wait along time for an available workstation in its checkpoint domain, we sup-
port migration between checkpoint domains. Aswith other execution domains, a domain migration
agent can transfer the checkpoint to a new checkpoint server and modify the CkptDomain attribute
in the job's resource request. However, it is aso possible for the domain migration agent to migrate
the job without transferring the checkpoint between checkpoint servers by simply modifying the
job’s resource request. In this case, the job will transfer its checkpoint from the old checkpoint
server directly to the CPU in the new checkpoint domain when it begins execution. For example,
the domain manager can modify the resource request as follows so the job will run in either the
ckpt.cs.wisc.edu domain or the ckpt.bo.infn.it domain:

CkptDomain = “ckpt.cs.wisc.edu”;

Requirements = ... && ((self.CkptDomain == other.CkptDomain) ||
(other.CkptDomain == “ckpt.bo.infn.it"));

Rank = self.CkptDomain == other.CkptDomain;

The Rank expression specifies that the job should remain in the current checkpoint domain if a
CPU is available there. Otherwise, if a CPU is available in the ckpt.bo.infn.it checkpoint domain,
the job will transfer the checkpoint from the ckpt.cs.wisc.edu checkpoint server directly to that
CPU to resume its execution. If the job is preempted again, it will send its checkpoint to the local
checkpoint server in the ckpt.bo.infn.it domain and update its resource reguest to look for a new
CPU in the new checkpoint domain:

CkptDomain = “ckpt.bo.infn.it”;
Requirements = ... & & (self.CkptDomain == other.CkptDomain);

It is possible for the migration agent to transfer a checkpoint only to find that CPUs are no longer
available in the new checkpoint domain. By delaying the migration until the CPU is alocated to the
job, the domain migration agent avoids performing potentially unnecessary checkpoint migrations.
This savings represents atrade-off, because the job will need to transfer the checkpoint over alonger
network distance at the start of the CPU allocation, increasing network wait time.

It is also possible to implement migration between checkpoint domains automatically (without
intervention of a domain migration agent) by specifying more complex Requi r errent s expres-
sions. In the following example, the job is allowed to migrate to a new checkpoint domain if it has
been waiting for an available CPU for over 24 hours.

34

LastCkptDomain = “ckpt.bo.infn.it”;
Requirements = ... && ((self.LastCkptDomain == other.CkptDomain) ||
((CurrentTime - self . StartldieTime) > 24*60* 60));

Alternatively, the job may be alowed to migrate between checkpoint domains only at night, when
demand for capacity on the wide-area network is lower, as in the example below:

LastCkptDomain = “ckpt.bo.infn.it”;
Requirements = ... && ((self.LastCkptDomain == other.CkptDomain) ||
(ClockHour < 7) || (ClockHour > 18));

We can also implement an even more permissive policy, which allows the checkpoint to migrate
to a new domain at any time if there is insufficient CPU capacity in the current domain. We use
the Rank expression to specify that we would prefer that the job remain in the current checkpoint
domain, but it may migrate to any of the other domains specified inthe Requi r enent s expression
when necessary.

Requirements = (other.CkptDomain == “ckpt.bo.infn.it") ||
(other.CkptDomain == “ckpt.cs.wisc.edu”) ||
(other.CkptDomain == “ckpt.ncsa.uiuc.edu”);

Rank = (self.CkptDomain == other.CkptDomain);

Checkpoint domains differ from other execution domains due to the flexibility provided by
checkpoint servers. Unlike file servers, which are often not under the administrative control of
Condor administrators, checkpoint servers may be installed on any machines with available disk
space. Since all nodes have access to all checkpoint servers through Condor APIs, checkpoint
servers can be used as more general-purpose data staging areas to improve accessibility to job data,
providing greater scheduling opportunities to the execution domain managers.

5.4 Related Work

Execution domains draw on the techniques of clustering and data staging to improve remote ex-
ecution performance. Clustering is a well-established technique for improving performance and
scalability in distributed systems.

Liu [38, 39] proposed a clustered load balancing model for job scheduling that leverages the
natural clustering found in large distributed systemsin terms of network performance and job work-
load. In this model, scheduling is performed independently in each cluster, enabling more accurate
and dynamic scheduling, and jobs are dispatched globally only when local cluster resources are
exhausted.

Ozden et a. [49] proposed adistributed clustering approach for designing load sharing systems.
They show by simulation that the scalability of purely centralized load sharing algorithmsislimited
by the capacity of the central server, and the scalability of distributed load sharing algorithms is
limited for non-homogeneous systems due to the increasing costs of distributed search. Distributed

35

clustering takes amiddle ground by performing centralized |oad sharing within each resource cluster
and distributed load sharing between clusters, resulting in improved scalability.

The Utopia load sharing facility [73, 81] uses a cluster architecture for scalable distribution of
resource load information. Load information can be exchanged between clusters according to a
configured directed graph. The default job placement policy prefers to schedule jobs in the local
cluster but jobs will run in remote clusters if a remote host is available with a significantly more
attractive load index vaue.

Clustering techniques have also been used to improve locality of memory references and inter-
process communication in large-scale non-uniform memory access (NUMA) multiprocessors.

Zhou and Brecht [10, 80] propose processor pool-based scheduling for large-scale NUMA mul-
tiprocessors. Processor pools are an operating system construct for scheduling parallel applications.
The system is partitioned into a fixed set of equal sized pools, and the threads of a parallel job are
scheduled to run within a single processor pool to improve memory locality.

The Hurricane operating system [70] uses a hierarchical clustering approach to improve per-
formance and scalability in NUMA multiprocessors. Hurricane partitions hardware and software
resources into clusters. Operating system resources are partitioned and replicated across the clus-
ters to reduce resource contention within the operating system. Application requests to independent
physical resources are managed by independent operating system resources. The scheduler per-
forms fine-grained load balancing within clusters and course-grained job placement and migration
between clusters, minimizing the number of clusters spanned by parallel jobs to improve commu-
nication locality. The scheduler directs application 1/0 to nearby disks and places application data
close to where it will be accessed. Experiments with Hurricane found that clustering different re-
source classes independently can result in significant performance improvements.

The execution domains mechanism allows cluster definitions to be defined at any time and
alows many independent cluster definitions to co-exist to support custom scheduling policiesin the
distributed system.

Data staging and replication are also well-known techniques for improving 1/O performance,
asillustrated by recent work in developing the Globus Data Grid [14, 71], an architecture for the
management of storage resources and data distributed across computational grid environments. In
the Globus Data Grid framework, a metadata service provides information about network connec-
tivity and storage system details useful for choosing data storage sites, and a replica manager can
create and delete copies of file instances (replicas) on the storage systems. A replica catalog pro-
vides information about where replicas are stored, and a replica selection service chooses the best
available file replica based on user preferences and information about storage resource performance
and policies. Condor classad matchmaking mechanisms have been used to implement a prototype
Globus Data Grid replication selection service.

Replica selection services in the Globus Data Grid are independent of job placement services.
A broker can combine replica selection with job placement to implement application-specific co-
scheduling algorithms and policies. In contrast, execution domains are a simple mechanism using
existing scheduling services provided by the Condor system to locate an execution site with the
required access to a dataset.

36

55 Summary

Execution domains provide a flexible scheduling mechanism for ensuring that jobs have access to
required data resources at the execution site. Unlike many existing clustering mechanisms, ex-
ecution domains can be configured dynamically and can be defined for different classes of data
resources on the network. We have shown how execution domains can be implemented in the Con-

dor environment and illustrated how checkpoint domains are used to localize checkpoint transfers
in Condor.

37

Chapter 6

Networ k and CPU Co-Allocation

6.1 Introduction

This chapter presents a framework for co-allocating network and CPU resources in batch schedul -
ing systems. The goal of the framework is to avoid oversubscribing network resources. This goal
is motivated by two concerns. First, batch jobs often share network resources with other best-effort
network users. In many environments, it is important for the batch system to be a “good citizen”
and not adversely impact interactive resource usage. Controlling (and monitoring) the system’s net-
work usage can help administrators manage available network resources more effectively. Second,
goodput suffers when the network is oversubscribed. Transferring jobs data to and from execution
sites take longer, limiting the system'’s ability to overlap I/O with computation. Allocating network
resources gives the system the ability to prioritize network streams when some network transfers
are more time-critical than others.

Our network load control is not motivated by aneed to improve low-level network performance
or stability. We assume that underlying network resources are stable under heavy load. We eval-
uate our mechanisms on Ethernet [46] networks, which have been shown to be stable under heavy
load [62]. We are instead motivated to control network load for the higher-level reasons stated
above: to implement administrative policies and use available network resources more effectively
to support efficient remote job execution.

To implement CPU and network co-allocation in the matchmaking framework, we define two
types of resource providers. compute servers and network managers, as illustrated in Figure 20.
Compute servers allocate CPU, memory, and disk resources at a compute site, and network man-
agers alocate network resources. Compute servers advertise available computing capacity to the
matchmaker, and network managers advertise available network capacity. Job managers make re-
guests for compute and network resources. The matchmaker declares a match when CPU and
network resources are available to satisfy ajob’s resource request. The job manager then contacts
the compute server(s) and network manager(s) to claim the resources.

The matchmaker and network manager work together to allocate network resources. The match-
maker implements network admission control at the granularity of job placements and preemptions,
according to the capacity advertised as available by the network manager. The network manager
supports fine-grained network scheduling with advance reservations in the claiming protocol.

38

la. Resource Offer

1b. Resource Request
2. Match Notification
3.Claim

Matchmaker

(13

Compute
Server

Figure 20: Network and CPU Gang-Matching Protocol

6.2 Admission Control

Admission control in the matchmaker restricts matches to only those allocations that can be im-
plemented with available network capacity within the matchmaker’'s current scheduling horizon.
The matchmaker builds a network map from the information provided by the network manager
that includes the available capacity of each network resource. For each job placement request, the
matchmaker determines if sufficient network capacity is available to perform the placement of the
job at each candidate compute site. When it finds a match, the matchmaker subtracts the network
capacity allocated in that match from its network map.

Admission control is particularly beneficial during large scheduling events, when thereisalarge
changeinthe job workload or in resource availability. Thefollowing scenarios are examples of large
scheduling events.

A high priority user submitsalarge cluster of jobs. This often occurs in high throughput com-
puting environments, where users submit alarge batch of jobs that explore a parameter space
or perform discrete work-steps in alarge computation. It also occursin high performance en-
vironments, where large parallel jobs require an allocation of alarge cluster of CPUs. Lower
priority jobs are preempted as necessary so that compute resources can be allocated to the
new, high priority jobs, and the input data for the new jobs is transferred to the execution sites
before they begin execution.

A large cluster of jobscompletes. Thisis also afrequent occurrence in high throughput comput-
ing environments, when the last work-step is processed in a master-worker application and all
of the workers exit. Similarly, in high performance environments, the completion of alarge
parallel job can trigger significant scheduling activity. The output from the completed jobsis
transferred from the execution site(s) to its final destination, and queued jobs are scheduled
on the newly available compute resources.

A large number of CPUsjoin or leave the pool. In a cluster of workstations environment, large
clusters of CPUs may join or leave the pool of available resources as a result of external

39

usage. For example, all workstations in aclassroom or |aboratory may become unavailable to
batch jobs as students login at the start of class and become available again at the end of class.
Additionally, large system maintenance events, such as scheduled system upgrades, network
or power outages, or upgrades to the batch scheduling environment itself can cause these large
events. When CPUs become available, the scheduler attempts to start jobs on those CPUs as
quickly as possible. Theinput data for the scheduled jobs is transferred to the execution sites
before the jobs begin computing. When CPUs become unavailable, the result is either alarge
number of checkpoint events or a large amount of work lost by jobs unable to checkpoint.
In either case, the preempted jobs return to the queue and may immediately preempt alarge
number of lower-priority jobs running at other compute sites.

Taken individualy, job placements may not impose a significant load on the network. However,
when these large scheduling events occur, the large number of job placements can dramatically
oversubscribe network resources. Some mechanism of throttling the scheduler is required to man-
age these events. Simple controls, such as configured limits on the number of simultaneous job
placements, can be inadequate in large, dynamic, heterogeneous systems. Network admission con-
trol provides a mechanism for controlling network load directly.

The following example illustrates the benefits of admission control in the matchmaker during
large scheduling events. Our experimental setup contains 16 dual-processor machines and a check-
point server connected by a switched, private, Fast Ethernet. 32 SimpleScalar [11] simulation jobs
are waiting in the queue with checkpoints stored on the checkpoint server when the 32 CPUs be-
come available. These jobs are taken from examples found in the University of Wisconsin-Madison
Computer Sciences Condor pool. 16 of the jobs are running the SPEC95 mgrid benchmark and
have 92 MB checkpoint files, and the other 16 jobs are running the SPEC95 compress benchmark
and have 278 MB checkpoint files. When the jobs are scheduled with admission control disabled,
all 32 jobs are scheduled immediately and begin transferring their checkpoints from the checkpoint
server simultaneously. The mgrid jobs complete their checkpoint transfers first and begin running
in approximately 4 minutes, and the compress jobs complete their checkpoint transfers and begin
running in about 8 minutes. When the jobs are scheduled with admission control enabled, only a
small number of transfers are scheduled simultaneously, so the first jobs begin running within 32
seconds. The admission controlled schedule does not fully utilize the network capacity due to the
scheduling granularity of the Condor matchmaker, so the final 3 jobs begin running later in the con-
trolled case than they did in the uncontrolled case. However, the benefit of starting most of the jobs
earlier resultsin an overall increase in goodput. The start times for the jobs are plotted in Figure 21.
The area under each curve is the total goodput obtained by the jobs with and without admission
control enabled. Since most of the jobs start running earlier in the admission controlled case, the
area under the admission controlled curve is greater until beyond the 8 minute mark where the lines
cross because the admission controlled case does not fully utilize the network. The overall areain
the admission controlled case is greater, however, resulting in over 70 CPU minutes of additional
delivered goodput.

40

Jobs Running
I~
[<2]
T

4 ,,,_v"“'r Admission Control i
- No Admission Control -------
0 l N — L 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Minutes

Figure 21: Allocating Network Capacity

/1 request network capacity for job placenent
/1l returns 2 if capacity is available to this user,

/1 1if user’'s fair-share is already all ocated

I but capacity is otherw se avail abl e,

/1 Oif the network is already over capacity, and
11 -1 on error

i nt Request Pl acenent (Cl assAd request, Cl assAd offer,
Cl assAd preenpt edAl | ocation);

/1 comrit |ast placenment request (and charge for usage)
/1 returns 0 on success and -1 on error
i nt Comm t Last Pl acenment Request () ;

Figure 22: Admission Control Module Interface

6.2.1 Implementation

The admission control module implements network allocation and accounting in the matchmaker.
The interface to this module is shown in Figure 22. The Request Pl acenent method computes
the network capacity required to satisfy the job manager’s request with the compute server’s offer,
including the capacity required to preempt current allocations when necessary, from the provided
ClassAd attributes. The Conmi t Last Pl acenment Request method commits the last placement
request and charges the requester for the usage. The commit interface allows the matchmaker to
test the feasibility of multiple matches before committing an allocation when searching for the best
match according to the requester’s preferences.

41

< CapacityWindow ——————————————— >

128.105.123.*
[
128.105.143.*
: Lok = ATLATTITTTITATIITOILL) 1
=
128.105.165.*
[
\ Allocation /
Cu.rrent Pointer Network
Time Capacity Network
Available Oversubscribed

Figure 23: Allocating Network Capacity

6.2.1.1 Capacity Allocations

The network manager associates a capacity with each network resource (for example, 10 Mbps) and
defines a time window in which the matchmaker may allocate network capacity (for example, 30
seconds). The window defines the matchmaker’s scheduling horizon by restricting the matchmaker
to performing only those allocations that can be supported by the network in that window. Defining
the window equal to the matchmaker’s scheduling interval has the natural result that the match-
maker postpones scheduling decisions until the interval in which they can be implemented, thereby
enabling the matchmaker to effectively incorporate new information into its scheduling decisions at
the start of each new scheduling period by not committing network resources far into the future in
previous scheduling periods.

The admission control module determines if network capacity is available in the current alloca
tion window using the following mechanism. The network map contains an “allocation pointer” for
each network resource that tracks previous allocations. Each allocation movesthe allocation pointer
forward by the allocated capacity in units of time. For example, satisfying arequest to transfer 100
MB over a10 Mbps link would move the pointer forward 100 M B+ &ML Lsccond — g() seconds.
The pointer never falls behind the current time: an unallocated network resource has a pointer equal
to the current time. Figure 23 illustrates the interaction between the allocation pointer and the ca-
pacity window. Capacity is allocated until the pointer passes beyond the current capacity window.
After that point, no additional capacity is allocated until sufficient time passes for the window to
shift forward to again include the pointer inside its boundaries.

We alow the pointer to pass beyond the end of the window for the final alocation to avoid
fragmentation problems. Otherwise, the end of the window would frequently remain empty when
remaining large requests would not fit in the available space. This also alows the system to support
requests larger than the capacity window. A maximum request size can be configured as a sanity
check to ensure that a single large request does not starve other requests for along period of time.

42

[/ returns 0 on success, -1 on failure
i nt LoadRoutingTabl e(const char filename[]);

/] sets current to point to the next network hop

11 in the route between src and dest

[l returns 1 if current is an intermedi ate hop

11 Oif current is the final hop (current == dest)
I -1 on error

i nt Next Hop(unsigned int ¤t, unsigned int src,
unsi gned int dest);

Figure 24: Router Module Interface

6.2.1.2 Routing

To calculate the network capacity required for aflow, the admission control module must determine
the network route of the flow between the endpoints. The router module loads a routing table from
a configuration file and calculates the routes of network flows according to the configuration on
behalf of other modules. The format of the route configuration file is described in Appendix A.3.
The router module interface is shown in Figure 24.

6.2.2 Goodput Allocations

In some cases, minor deviations from a strict priority-based allocation of CPU and network re-
sources can significantly improve the total goodput delivered by the system, especialy when user
priorities vary significantly. In particular, a heavy network user with high priority can potentially
monopolize network resources to such an extent that a large number of CPUs are |eft idle because
of insufficient network capacity to place jobs on them.

For example, consider a 128 CPU cluster served by an NFS server with 200 Mbps I/O band-
width, where local users have strict priority over guests. A local user’s jobs perform transformations
on 20 MB image files. Each job reads an image file and produces 5 new images of the same size,
requiring 60 CPU seconds to compute each new image from the input, so each job performs 120
MB of NFS /O every 5 minutes (3.2 Mbps). The scheduler can successfully overlap 1/0 with com-
putation for at most 62 of these jobs. If it runs additional jobs, the file server’s bandwidth will be
oversubscribed and the CPUs will be underutilized. Meanwhile, a guest user has a large number of
compute-intensive jobs in the queue. Running the guest’s jobs on 66 of the CPUs can double overall
system goodput with minimal impact on the high priority jobs. However, with strict priority-based
network allocation, the guest user’s jobs will never start because the user will not be alocated any
network capacity. We need to give the scheduler some discretion to deviate from strict priority-based
alocation when it can significantly improve goodput.

As a second example, consider the same 128 CPU cluster served by a checkpoint server with

43

200 Mbps 1/0 bandwidth. The job scheduler was disabled on the cluster for aday while researchers
benchmarked a distributed database system. A local user has a set of jobs in the queue, each with
256 MB checkpoaint files, and the same guest user from the previous example has a set of compute-
intensive jobs in the queue. If the job scheduler follows strict priority-based allocation of network
resources when it is restarted, it will schedule the local user’s jobs on the 128 CPUs. It will take
approximately 22 minutes to load the 128 256 MB checkpoints from the checkpoint server to the
compute nodes. If the scheduler performed those transfers simultaneously, the 128 CPUs would
sit idle for those 22 minutes, for a loss of over 46 hours of potential computing capacity. With
admission control, the scheduler can do much better by performing the transfers sequentialy, so
the first job begins computing in approximately 10 seconds, the second job in 20 seconds, and so
on, limiting the lost CPU time to 23 CPU hours. However, if the scheduler can deviate from strict
priority-based alocation, it can alocate some of those 23 CPU hours to the guest’s jobs without
significantly increasing the startup delay for the local user’s jobs.

These examples illustrate that it is useful to give the matchmaker discretion to deviate from
strict priority-based network allocation. We therefore alow the matchmaker to use some network
capacity for the purposes of improving overall system goodput when the network is oversubscribed.
The matchmaker uses the capacity to run jobs with low network requirements (“backfill jobs’) on
CPUs that would go idle if strict priority-based network allocation were enforced. We have imple-
mented this discretionary mechanism in the matchmaker with two configuration parameters. The
first parameter controls which jobs qualify as backfill jobs according to a network usage ceiling. The
second parameter controls how much discretionary network capacity is available to the matchmaker.
Limiting the amount of discretionary capacity controls how much the matchmaker can deviate from
strict priority-based allocation, so high-priority users with heavy network requirements will not be
starved.

6.2.3 Fair Allocation

Network and CPU resources are allocated fairly in the matchmaker according to user priorities as
follows. Each user’s fair-share of network and CPU resources is based on the user’s base priority
and recent usage of that resource. The base priority defines the relationship between the users. For
example, users with base priority of 1.0 should receive twice as many resources as users with base
priority of 2.0 and three times as many resources as users with base priority of 3.0. The allocation
algorithm gives requesters their fair-share of CPU resources unless they are using more than their
fair-share of network resources. Those using more than their fair-share of network resources must
wait until other user’s requests have been satisfied. The algorithm has two phases. Each phase alo-
cates network and CPU capacity to requesters according to their CPU fair-share. At each iteration,
the algorithm attempts to alocate an additiona CPU to the most deserving requester among the
users with outstanding requests (i.e., the user with the greatest difference between CPU fair-share
and current allocation). If arequest can not be satisfied because of insufficient CPU or network re-
sources, it is discarded (until the next run of the algorithm). As requests are discarded, the number
of requesters decreases.

In the first phase of the algorithm, requesters are limited to their fair-share of each network
resource. The fair-share is calculated according to the base priorities of the outstanding requesters

44

Run anal ysis sumary. O 32 resource offers,
0 do not satisfy the request’s constraints
0 resource offer constraints are not satisfied by this request
7 are serving equal or higher priority custoners
0 do not prefer this job
0 cannot preenpt because PREEMPTI ON_REQUI REMENTS are fal se
25 are available to service your request
Last successful match: Sat Mar 31 12:07:47 2001
Last failed match: Sat Mar 31 12:27:43 2001
Reason for last match failure: insufficient bandw dth

Figure 25: Scheduler Diagnostics Example

and their past network usage. As the number of requesters decreases, the relative share of each
remaining requester increases. Heavy network users are penalized by this mechanism, allowing
users with lighter network requirements to obtain allocations sooner. It is possible for all remaining
requests to reguire more than the requester’s fair-share of network resources. In that case, the
algorithm proceeds to the second phase, where the network fair-share limitation is removed.

Thefirst phase of the algorithm includes both atest for available network capacity and atest for
fair-share allocation. The fair-share test can potentially ensure that the network is not overallocated
on its own, making the capacity test superfluous. However, in some cases the capacity limits and
fair-share limits may not be directly comparable. For example, fair-share may be calculated over a
longer interval than that used by the network capacity controls, to allow short-term overallocation
to avoid fragmentation problems (as discussed in Section 6.2.1.1).

The network allocation required to satisfy a request depends on the execution site. Execution
sites are located on different network segments and may require different data access methods. For
example, if thejob’s dataisreplicated, the nearest copy of the datawill depend on the execution site.
Both endpoints of data transfers can be located on different networks depending on the execution
site chosen. For this reason, the algorithm must proceed to consider other matching CPUs when
network capacity is unavailable to match arequest with a previous CPU.

6.2.4 Diagnostics

One of the important lessons we learned from deploying network alocation in the Condor environ-
ment is the importance of providing feedback to help users answer the question “Why isn't my job
running?’. Condor users have been trained to expect a fair-share of CPU resources. When their
jobs are being restricted by bandwidth limitations, they receive less than their CPU fair-share and
want to know why lower priority users are getting more CPU resources than they are. We modi-
fied Condor’s implementation of the matchmaking protocol to return a description of the reason for
each failed match. Users can view the reasons for each job by issuing a query to the job manager.
Figure 25 shows output from an example query. The first section of the output lists the standard
Condor diagnostics for the CPU dlocation: how many CPUs do not satisfy the job’s request, how

45

= =
® N o
T T T

Jobs Running

IN
T

o
-

 No Feedback T

0 1 2 3 4 5 6
Minutes

Figure 26: Job Starts With and Without Feedback

many CPUs are not willing to run the job, how many are serving higher priority customers, etc. The
timestamps indicate when the matchmaker last attempted to find matching resources for the job’s
request. The reasons for match failure now reported include insufficient bandwidth, network share
exceeded, insufficient CPU priority, and no matching resources found, so in the above example,
the user can see that the job hasn't started yet, even though there are available CPUs, because of
insufficient network bandwidth.

6.3 Network Manager

We have seen in the previous section that the matchmaker implements network admission control at
the granularity of job placements. Once the matchmaker completes a match with avail able network
resources, the job manager contacts the network manager to receive additional network scheduling
services, including requests for additional network capacity, future reservations, and bandwidth
control of active network streams.

The job manager also keeps the network manager informed of itsjobs network usage whenever
possible. This helps the network manager determine how much network capacity is available to
be allocated to other jobs, either in the network manager itself or in the matchmaker, as illustrated
by the following example. 16 SimpleScalar compress jobs are waiting in the queue, in the same
experimental setup used previously, when 16 CPUs become available. The network manager is
configured to expect 160 Mbps available throughput from the checkpoint server, even though the
server ison 100 Mbps Ethernet. Without feedback, the matchmaker continues to allocate bandwidth
at 160 Mbps, starting new checkpoint transfers before the previous transfers have completed. When
feedback is enabled, the network manager detects that the checkpoint transfers are taking longer
than expected and backs off its alocations to the actual available bandwidth. As seen in Figure 26,
the jobs start running earlier when feedback is enabled, delivering over sixteen additional CPU
minutes to the jobs (i.e., the difference in area under the two curves).

The network manager can be effective even when its knowledge of available network capacity
islimited. Simple static control policies configured by an administrator can avoid costly scheduling

46

Network Manager Matchmaker
Avalil
[Capacity
Bandwidth : Admission Admission
Control Reservations Control Control
I Allocated
Capacity

Figure 27: Network Allocation Architecture

decisions in the matchmaker, and simple feedback from the job managers concerning the comple-
tion time of job placement transfers can help the network manager back-off network allocations
when less network capacity than expected is available. However, the network manager can take
advantage of additional information when it is available. For example, an external network weather
service [75] can provide dynamic predictions of available network capacity to the network man-
ager, and interposition agents [31], such as Bypass [67, 68] or Condor’s remote system call mecha-
nism [41], can provide additional information about job behavior, including network usage.

Given some knowledge about available network capacity (however limited), the network man-
ager must decide how that capacity should be distributed. Network allocation responsibilities are
divided between the matchmaker and multiple schedulers in the network manager, as illustrated
in Figure 27. Configured limits ensure that each admission control module does not monopolize
network resources. First, advance reservations are restricted to a configured percentage of current
available capacity (for example, 40%). Advance reservations provide only alimited guarantee be-
cause of competing network traffic external to the system. Therefore, this limit also serves to make
advance reservations more conservative, so there is a greater probability that the reserved capacity
will in fact be available when the time comes. Second, bandwidth controlled allocations are guar-
anteed a minimum percentage of available capacity (for example, 10%). Capacity is available to
the admission control modules to alocate if it is not reserved by the reservation module or allo-
cated from the bandwidth control modul€'s guaranteed capacity. With the above example limits, the
admission control module will be able to allocate at least 50% of available network capacity. The
bandwidth control module can then allocate any remaining unallocated capacity to active streams.

6.3.1 Reservations

The network manager’s reservation module implements aslot scheduler [20, 74] to allocate advance
reservations of network resources. The reservation interface supports both capacity and bandwidth
requests. A capacity request is a request to transfer a fixed amount of data between a source and
a destination, and a bandwidth request is a request to transfer data over a fixed time interval (for
example, during ajob’s run). Capacity reservations are used for bulk datatransfers while bandwidth
reservations are used for ongoing network streams, such as remote /O streams or inter-task commu-
nication. Requests include time and rate constraints and scheduling preferences. The slot scheduler
searches the allocation schedule for each network resource in the route between the source and des-
tination of the requested flow for the best reservation (according to the indicated preferences) that

47

—MP‘

Start End
Time Time

Figure 28: Slot Scheduling Example: First Fit

satisfies the request’s constraints. The resulting reservation is defined by a start time, end time, and
arate. Clients that require alocations that vary in rate must either make multiple reservations or
must use the bandwidth control module, described below in Section 6.3.2.

The slot scheduler supports the following search strategies for implementing reservation prefer-
ences.

e First Fit finds the reservation with the earliest start time and Last Fit finds the reservation
with the latest end time, within the specified time constraints. These search strategies are
acceptable for reservations that are not time critical. For example, the request may be for a
“background” datatransfer that need not be completed quickly, so long asit completes before
the specified end time.

e Earliest Completion finds the reservation with the earliest end time and L atest Start finds
the reservation with the latest start time, within the specified time constraints. These search
strategies are used for time critical transfers that should be completed as quickly as possible
after an event or should be completed as late as possible before a deadline, for example, when
scheduling checkpoint transfers before a scheduled eviction deadline, as discussed below in
Section 6.3.1.1. Starting the checkpoint as late as possible maximizes the job’s compute time
before it must stop and perform the checkpoint.

e Shortest Duration finds the (earliest or latest) reservation with the shortest duration (i.e.,
highest rate). This strategy is useful for blocking transfers with flexible time constraints,
to minimize the blocking transfer time. For example, if checkpoint transfers are a blocking
operation, scheduling periodic checkpoints using shortest duration reservations can minimize
the checkpoint time.

Figure 28 illustrates an example first fit reservation (the solid black bar). 75% of network
capacity isreserved by two previous requests at the start time, and the current request can be satisfied
with the remaining 25% of network capacity inside the time boundaries. Assuming this reservation
also meets the request’s minimum rate requirement, it is an acceptabl e allocation.

It is clear, however, that additional capacity is available to improve the performance of this
transfer. Figure 29 illustrates the results of the same request with a preference for the earliest transfer
completion time. The start of the transfer is delayed until the end of one of the other reservations so
50% of network capacity can be alocated to it. The doubling of the speed of the transfer more than
compensates for the later start time, yielding an earlier completion time.

Figure 30 shows the reservation that would be found in the same example as above with the
shortest duration strategy. The start of the transfer is delayed still further, and the resulting rate

48

| |
Start End
Time Time

Figure 29: Slot Scheduling Example: Earliest Completion

—_— —

Start End
Time Time

Figure 30: Slot Scheduling Example: Shortest Duration

increase is not sufficient to result in an earlier completion time than in the previous figure.

For the sake of completeness, weinclude a“greedy” reservation in Figure 31. Thistype of reser-
vation is not supported by the slot scheduler, due to the fixed rate requirement. Greedy bandwidth
alocations are supported in the bandwidth control module, as described below in Section 6.3.2.

The dot scheduler is implemented with alist of reservation markers (a begin and end marker
for each reservation) sorted by time for each network resource. Each marker records a change in
the reserved bandwidth. Begin markers record an increase in the reserved bandwidth (i.e., a positive
delta) and end markers record a decrease in the reserved bandwidth (i.e., anegative delta). Inserting
n reservations is therefore an O(n?) operation. Figure 32 plots the worst-case performance of the
dlot scheduler on a 200 MHz Pentium Pro workstation for inserting up to 2000 capacity reservations,
where the scheduler must search to the end of the list to satisfy each reservation. For multi-hop
reservations, the slot scheduler searches the reservation list for each hop, so increasing the number
of hops increases the search time by a constant. The scheduler inserts 1000 three hop reservationsin
about one second. The performance of this simple scheduler is acceptable for moderate workloads.
We could use tree data structures to improve the scalability of the slot scheduler if needed [60].

6.3.1.1 Scheduled Shutdown Events

The initial motivation for developing the slot scheduler was to implement scheduled shutdown
eventsin the Condor environment. As described above, when CPUsleave the pool, the jobs running

= |
== \‘ ‘
Start End
Time Time

Figure 31. Slot Scheduling Example: Greedy Reservation

49

45 T T T
threehops —+—

Seconds

0 500 1000 1500 2000
Reservations Completed

Figure 32: Slot Scheduler Performance

on those CPUs must be evacuated from the execution sites. For checkpointable jobs, this requires
transferring the jobs' checkpoints to stable storage before the evacuation. The two causes of large
shutdown events in the University of Wisconsin-Madison Computer Sciences department Condor
pool are scheduled system reboots and Condor system maintenance. Lab workstations are rebooted
each night to cleanup any orphaned user processes resulting from that day’s activity, and worksta-
tion reboots are frequently scheduled to install system patches. The Condor system is shutdown
for software upgrades or scheduled server maintenance. Condor has the ability to restart itself on
each machine when a new version of the software is released. However, these restarts can generate
a large number of simultaneous checkpoint transfers because running jobs must be evicted before
each compute server can restart. Scheduling these checkpoint transfers ensures that al jobs are
checkpointed before a shutdown deadline. Scheduling can aso improve aggregate delivered good-
put by scheduling fewer simultaneous checkpoints, so while the first few jobs are checkpointing,
other jobs can continue computing until their scheduled checkpoint time.

A shutdown event scheduler called the eventd schedules the checkpoints for these large shut-
down events. Each scheduled shutdown event is specified in a configuration file with a start time,
duration, and constraint. The eventd schedules job preemptions for these events so there will be
no jobs running on execution sites that match the constraint at the event start time. As the event
approaches, the eventd reserves network capacity to transfer checkpoints for all running jobs. First,
it computes the duration of each checkpoint transfer based on the checkpoint size, the route between
the execution site and the checkpoint server, and the capacity of each network resource in the route.
Then, for each transfer, from shortest to longest, it makes a latest start reservation request. Schedul-
ing the longer transfers earlier keeps the largest number of jobs running aslong as possible up to the
shutdown event. Once the initia reservations are established, the eventd monitors the state of the
pool until the time for thefirst transfer arrives. During this time, it cancels reservations for jobs that
complete and makes new reservations for new jobs that start running. When the time for the first
checkpoint arrives, the eventd configures all execution sites that match the constraint to no longer
start checkpointable jobs because network capacity will not be available to checkpoint their work.
Without this step, jobs might be scheduled again at the execution sites after the eventd checkpoints
them. The eventd then initiates the job checkpoints according to the scheduled reservations. When
the start of the event arrives, the eventd preempts all non-checkpointable jobs and configures all

50

32 b Eventd Controlled ——— i
i Manual Shutdown -------

Jobs Running
I~
[<2]
T

Minutes Before Shutdown Event

Figure 33: Shutdown Before Deadline

execution sites that match the constraint to not run jobs until the end of the shutdown event.

The following experiment demonstrates the eventd's effectiveness. 32 SimpleScalar jobs are
running, and 32 CPUs are reserved for atiming experiment starting at time 0. To manually evict the
jobs before the experiment, the administrator estimates how long it will take for all jobs to check-
point and sends shutdown commands to all of the jobs in advance of the deadline. In our experiment,
it took about 11 minutesfor all jobs to checkpoint when manually evicted. Figure 33 showsthe man-
ual shutdown case assuming the administrator made a perfect estimate of the shutdown time. All
jobs stop running approximately 11 minutes before the deadline to write their checkpoints. The
results under an eventd controlled shutdown are also shown in the figure. The eventd schedules the
checkpoints in advance of the deadline using latest start reservation requests. All checkpoint trans-
fers share a bottleneck at the checkpoint server, so the reservations do not overlap. Since the eventd
sorts the reservation requests from shortest to longest, the mgrid jobs, with their 92 M B checkpoints,
get the reservations closest to the deadline and the 278 MB checkpoints for the compress jobs are
performed first. The eventd leaves slack in the schedule in case there is competing network traffic
or some estimation error in the transfer times, so the network is not fully utilized by the eventd's
schedule. Comparing the area under the two curves in Figure 33 shows that the eventd's schedule
results in over 3 additional CPU hours delivered to the jobs. In addition to the increase in goodput,
the eventd evicts the jobs automatically before the deadline, so the administrator need not manually
estimate the time required to shutdown the jobs before the deadline.

Scheduling the checkpoints sequentially would be less useful if the jobs pre-copied their check-
points while they continued execution. However, scheduling the checkpoints before the shutdown
event would be equally beneficial, so the jobs can checkpoint successfully and avoid a rollback.
Capacity for two checkpoint transfers per job would be required. First the job would write its full
checkpoint while it continues running. When it completes the first checkpoint transfer, it would
then perform a blocking transfer of any modified state. Scheduling the checkpoints close to the
event would continue to be the most efficient approach, as it would minimize the run-time after the
start of the first checkpoint transfer, thereby minimizing the amount of modified state that would
need to be transferred later. Therefore, the larger checkpoint transfers would still beinitiated before
the smaller checkpoint transfers. The schedule for thefirst transfers would need to leave some slack
for the second transfers to complete before the deadline. The most conservative approach would

51

100 MB job 50 MB job 25MB job
e
B
3 % —
g
I I - o
350 300 250 175 150 time

Figure 34: Shutdown Event With Pre-Copying

be to assume the worst case: that all data would be modified and need to be re-checkpointed. The
jobs can then transfer the modified data at the end of the second checkpoint reservation, according
to how much data must actually be sent.

As a simple example, consider three jobs to checkpoint over Ethernet before a deadline, with
100 MB, 50 MB, and 25 MB checkpoints. The total transfer time for the 175 MB of data would be
approximately 175 seconds (at 1 MB/s), so the eventd would schedul e the first round of checkpoints
to start 350 seconds before the deadline, leaving 175 seconds of slack for the final checkpoints. The
100 MB transfer would be scheduled to begin 350 seconds before the deadline, the 50 MB transfer
300 seconds before, and the 25 MB transfer 250 seconds before, asillustrated in Figure 34. Each
job has a second reservation of equal shape for the second checkpoint. However, each job only
modifies 5 MB of its state after the checkpoint, so they each delay their final checkpoint transfers
until 15 seconds before the deadline.

In practice, we need not be so conservative when reserving bandwidth for the second checkpoint.
The size of the second checkpoint is afunction of the job’s working set and memory reference rate,
and we expect it to be small. We further expect that the size of the second checkpoint could be
accurately predicted based on past job behavior. Finally, the cost of failing to perform the second
checkpoint is very low, because the job can always rollback to its first checkpoint without losing
much work.

6.3.2 Bandwidth Control

The network manager also supports fine-grained bandwidth control for long-lived network streams.
Requesters register a bandwidth request for each active stream and provide frequent feedback to
the network manager regarding their network usage and needs. The network manager allocates
available bandwidth to the registered streams according to a max-min fair share algorithm, modified
from [43]. This supports the notion of a nice stream, tolerant of short-term bandwidth fluctuations,
that the network manager can control to improve the performance of time-critical network flows.
Examples include spooled output, network backups, or bulk transfers with deadlines far in the fu-
ture. The network manager sends amessage to arequester whenever it needs to adjust the requesters
sending rate, either because of a change in available bandwidth (due to higher priority flows) or a
change in the bandwidth requests.

52

6.4 Related Work

The Globus Architecture for Reservation and Allocation (GARA) [6, 25], developed concurrently
with our work, defines agenera -purpose framework for co-allocation of different types of resources,
including CPU and network. The architecture provides APIs for discovery, reservation, allocation,
and monitoring of generic resource objects. Co-reservation agents use these APIs to search for sets
of resources that satisfy their applications’ requirements and then reserve the resources. Clients
can register callbacks for event notification on resource objects, for example when packet losses are
detected. GARA uses a resource-neutral slot manager to implement reservation services when the
underlying resource manager for a given resource does not support reservations.

GARA provides mechanisms for performing co-allocation and relies on external agents to use
the mechanismsintelligently. In contrast, our co-allocation mechanism |everages the monitoring and
control provided by Condor’s remote system call and checkpointing mechanisms to transparently
manage applications network regquirements. We believe that our approaches for network and CPU
co-allocation in high throughput computing environments can be used in the future design of co-
alocation agentsin the GARA framework.

We have developed and evaluated our network allocation and reservation mechanisms using
best-effort network services. The IETF integrated services [61, 77] standards provide end-to-end
quality of service (QOS) to flows on IP networks. QOS reservations are established using RSVP[9,
78]. Scalahility, security, and policy control for these services are active areas of study [44] and de-
ployment isin the experimental stage. The differentiated services [8] framework addresses scal abil-
ity issues present in the integrated services standards by using no per-flow state in routers. Instead,
bandwidth brokers [29, 60] allocate and police bandwidth at the network edges, mapping packets
into a small number of configured per-hop service behaviors in the network. In networks where
bandwidth brokers are deployed, our network manager can serve as an interface between the job
scheduler and the broker, exporting the bandwidth broker’s QOS service to the batch system.

Network and CPU co-allocation is aform of load control that avoids network thrashing, where
jobs spend a significant amount of their time blocked on network transfers because the network
is oversubscribed. Our co-allocation techniques and results are similar to previous techniques for
avoiding virtual memory thrashing. LT/RT (Loading Task / Running Task) control in the WS-
CLOCK agorithm [13] limits the number of tasks being concurrently paged in to reduce contention
for paging bandwidth, just as hetwork and CPU co-allocation limits the number of job placements.
Carr and Hennessy observe that contention for paging bandwidth causes task loads to take longer,
with the potential for a cascade effect as more jobs complete their time slices, resulting in virtua
memory thrashing. LT/RT control is shown to have a number of benefits, including more effec-
tive memory utilization, since fewer memory pages are committed to loading tasks, and improved
processor utilization by balancing the number of loading and running tasks. We obtain similar re-
sults with network and CPU co-allocation, improving network and CPU utilization by balancing the
number of loading and running jobs. Carr and Hennessy also observe that delaying the activation of
additional tasks allowsthe system to predict which tasks will fit in memory more accurately because
the memory needs of previously loaded tasks can be taken into account when deciding to load later
tasks, just as delaying job placements until network capacity isavailable allows the scheduler to take

53

the current state of the distribution system into account when making future placement decisions.
Carr and Hennessy propose two optimizations which also have analogies to network and CPU
co-alocation. First, when tasks reach the end of their time dice, they should not be deactivated until
their memory can be allocated to a loading task. This is analogous to delaying the preemption of
alower-priority job to run a higher-priority job until sufficient network capacity is available to per-
form the preemption efficiently. Second, process page reads for running tasks should have priority
over reads for loading tasks, so running tasks continue executing efficiently. Our network manager
similarly prioritizes network allocations for running jobs over network allocations to loading jobs.

6.5 Summary

We have presented a framework for co-allocating network and CPU capacity in job scheduling
systems, based on the matchmaking framework used in the Condor High Throughput Computing
environment. The framework co-allocates network and CPU resources for job placements and sup-
ports advance reservations and bandwidth control for active streams. Weillustrated the effectiveness
of the framework by implementing it in the Condor system and presenting the results of controlled
experiments.

54

Chapter 7

Conclusion

7.1 Future Work

The research presented in this dissertation has focused on specific problems that occur in high
throughput computing environments and mechanisms to solve those problems. There are more
problems to solve and many ways in which this work can be extended. We discuss some possible
areas of future work below.

7.1.1 Overlapping 1/0 with Computation

Aswe have seen, the Condor system currently does little to overlap I/0O with computation. Progress
to date includes the Kangaroo system and buffering in the remote 1/0O library. We have discussed
some additional possibilities for 1/0 and CPU overlap in high throughput environments in this dis-
sertation. In particular, there are opportunities to overlap checkpoint transfers with computation,
when preempting one job to run another and by performing checkpoints asynchronously. Kangaroo
servers can potentially be local spoolers for job checkpoints, so checkpoints can be performed at
local disk speeds and spooled to central servers as bandwidth permits [51].

7.1.2 Compression

One approach for efficient checkpointing reduces the amount of checkpoint data to be transferred.
Techniques for efficiently compressing checkpoints include saving only those memory pages mod-
ified since the last checkpoint [54]. Memory exclusion allows the application to specify ranges of
memory which need not be saved across a checkpoint [52, 53]. The performance benefits of com-
pression vary according to the relative speed of the compression algorithm compared to available
I/0 bandwidth. Compression can be particularly effective when many processors are checkpointing
across a shared network, since the checkpoints can be compressed in parallel to better utilize the
shared I/O bandwidth. An adaptive approach could choose the appropriate compression mechanism
for ajob at run-time, according to the available network capacity.

7.1.3 Goodput Scheduling

The goodput model gave us some intuition about network scheduling strategies in high throughput
computing environments. Network wait time and checkpoint rollbacks are two of many factors that
impact the performance of batch jobs. For example, we saw that Condor’s suspend policy, where
jobs are suspended at the first sign of workstation owner activity instead of being immediately

55

preempted, can have a significant impact. It would be interesting to extend the goodput model to
better understand the tradeoffs of the suspend policy so it can be applied more effectively. Additional
evaluation of mechanisms to choose execution sites based on performance predictions would aso
be useful.

The expected goodput delivered by a given alocation depends on attributes of the job and the
alocated resources. First, an estimate of the job’s CPU, memory, and 1/O requirements is needed.
These regquirements can then be compared with each compute site’s available network capacity,
available memory, CPU speed, (estimated) duration of allocation, and preemption policy. The good-
put expected for agiven job can vary for each compute site when the resource pool is heterogeneous.
The expected goodput will be zero for some sites—for example, when there is a mismatch between
the job’s executable and the processor architecture at the compute site. The expected goodput will
be low for sites with insufficient memory for the job because of expected virtual memory thrashing.

To choose the allocation that enables the job to accomplish the most work in the least amount
of time, we want to maximize gﬁ:jﬁ“g; The time required for job placement can be computed from
the size and location of the job’s input data and the available network capacity to the compute site.
Likewise, the job cleanup time can be computed from estimates of the job’s output and available
network capacity. The allocation’s maximum duration may be set by queueing system policy or may
be estimated based on previous availability of the compute resource. If the allocation is preemptible,
the duration estimate must also consider the preemption probability. If the job is expected to com-
plete before the end of the alocation, then the expected duration can be calculated based on thejob’s
expected run-time instead. A rollback factor must account for the possibility that some or al of the
job’s work will be lost due to preemption or failure at the compute site. The amount of work lost
depends on whether the job is checkpointable, and if so, the frequency of periodic checkpointing
and the probability that the job will not be able to checkpoint when preempted. Finally, the goodput
estimate must include an estimate of the job’s execution speed at the remote site, possibly calculated
from previous job history and CPU benchmarks at the site. If the job’s I/O can not be overlapped
completely with computation during its run, the estimate must be decreased appropriately.

In practice, estimating many of these factors with sufficient precision may be impossible. How-
ever, we can draw several conclusions from the model that suggest simpler policies that can be
applied in practice. All jobs prefer allocations with longer expected duration, better network per-
formance to 1/0 servers, and faster processors. However, the trade-offs between these three factors
can differ between jobs.

e Jobs that are not checkpointable have a strong requirement for an alocation with high proba-
bility of duration longer than the job’s expected run-time.

e Alternatively, jobs that can checkpoint and migrate can tolerate shorter allocations, particu-
larly when good network performance reduces migration costs.

e |/O-intensive jobs will place high value on the network capacity available throughout the
alocation, and may be less concerned with small changes in CPU speed.

e In contrast, jobs with small 1/0 and migration requirements will place greatest value on CPU
speed, since they can migrate to the best compute site with little overhead.

56

Given abasic understanding of the type of the job (ratio of computing to 1/0, checkpoint size, etc.),
users can choose simple metrics to request allocations more suited to the needs of their jobs.

7.1.4 Migratingto Improve Goodput

The benefits of job migration and the policies under which jobs should be migrated have been
extensively studied (see, for example, [16, 17, 27, 32, 33]). We briefly discuss potential applications
of the goodput framework to the job migration question here. The benefit of migrating to a site that
promises better performance must be compared to the expected cost of migration. From the goodput
perspective, the cost is the time the job spends transferring its state over the network to the new site
and the benefit is the resulting improvement in goodput.

Migration can improve goodput when the new execution site has a faster CPU, more memory
or network capacity, or a longer expected duration. The most important factor depends on the
requirements of the job. A CPU-bound job can improve goodput by migrating to a site with afaster
CPU. Likewise, a network 1/0O-bound job can improve goodput by migrating to a site with better
network 1/0 performance. If the current alocation has a high probability of rollback (for example,
because jobs are killed by the scheduler without warning when the resource is claimed by its owner),
the job can improve expected goodput by migrating to a compute site with better service guarantees.
To determine when it is advantageous to migrate, we can compare the expected remaining goodput
of the current allocation with the expected goodput of a potential new allocation.

7.1.5 Crossing Administrative Domains

Our primary experience with these network allocation mechanisms has been in asingle administra-
tive domain. Many of the overheads of remote execution are exacerbated when crossing adminis-
trative domains, for the simple reason that network distances increase.

Asdescribed in Section 2.4.2, job managers in Condor support asimple mechanism called flock-
ing for cross-domain job execution. When flocking, the job manager advertises resource requests
to matchmakers in multiple administrative domains and runs jobs in the domain where available
resources are found. Interfaces between Globus [21] and Condor have a so been devel oped to allow
Condor jobs to harness computational grid resources using Globus mechanisms and to make Con-
dor resources available to Globus jobs. Condor’s remote system call facilities are particularly useful
for cross-domain job execution because they emulate the job’s home environment at the remote
compute site.

We have found checkpoint domainsto be very effective at managing checkpoint traffic for cross-
domain job execution. Jobs store their checkpoints on the checkpoint server local to the domain
where they are running. Execution domain regquirements are also effective in cross-domain exe-
cution for restricting the execution sites for a job according to the availability of data resources.
However, execution domain preferences are less effective because they are evaluated locally in each
Condor pool. Each matchmaker will find the most preferred execution site in its domain for the
job, but the job manager must compare the results from multiple matchmakers to determine which
domain provides the best resource.

57

To alocate or reserve network capacity across multiple administrative domains, the job manager
must contact one or more network managers in each administrative domain. Mechanisms for co-
alocating resources from multiple network managers would be useful in this case. One approach
would beto interface Condor’s network managers with the Globus Architecture for Reservation and
Allocation described in Section 6.4.

7.1.6 Integration with Gang-Matching

As discussed in Section 2.4.1, we have strived to make our work compatible with the recently
developed gang-matching model for resource co-allocation. We see two areas in which the gang-
matching model must be extended to facilitate network and CPU co-allocation.

First, some support for partial allocation of resources is required, since many slices of net-
work capacity are allocated in one matchmaking cycle. The gang-matching framework as currently
formulated assumes that resources are completely consumed when matched, so shared resources
must be partitioned into individual resource offers. However, it is not feasible to partition network
resources in advance. Classad replacement, where resources offers can be partially allocated au-
tomatically in the matchmaking process, is cited as future work in [55] and should address this
issue.

Second, the gang-matching framework does not currently support gangs of dynamic size. How-
ever, requiring fixed-sized gangs makes it difficult to alocate network capacity on intermediate
network devices for a network flow. The endpoints for network capacity requests may be deter-
mined at match time, according to the chosen execution site, so intermediate network hops can not
be precomputed by the requester. Likewise, pre-computing all ? routes for n endpoints in the sys-
tem is not feasible—the routes should be computed at match time. Therefore, some mechanism for
dynamically sized gangs is required.

7.2 Summary

This dissertation has presented the case for allocating network resources in batch job environments.
We presented a goodput metric that compares ajob’s performance in the batch environment to its
ideal performance using local, dedicated resources and suggested scheduling strategies based on
this metric for different classes of batch jobs, according to the jobs network requirements. We
showed that batch jobs generate significant network load in the Condor pool in the University of
Wisconsin-Madison Computer Sciences department and profiled the pool’s capacity. In particular,
we confirmed previous results that over 70% of workstation capacity goes unused by workstation
owners and illustrated that harnessing the last 10% of idle capacity provided by short idle periods
can account for over 50% of the job placement overheads in the system. We introduced execution
domains, a mechanism to improve data locality in HTC environments by clustering compute nodes
based on their accessto network resources. Finally, we presented an implementation of network and
CPU co-dlocation in the matchmaking framework and demonstrated its ability to improve goodput
by avoiding the oversubscription of network resources.

58

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz. A comparison of mechanisms
for improving TCP performance over wireless links. IEEE/ACM Transactions on Networking,
5(6):756—769, 1997.

J. Basney and M. Livny. Managing network resources in Condor. In Proceedings of the Ninth
|EEE International Symposium on High Performance Distributed Computing, August 2000.

J. Basney and M. Livny. Improving goodput by co-scheduling CPU and network capacity.
International Journal of High Performance Computing Applications, 13(3), Fall 1999.

J. Basney, M. Livny, and P. Mazzanti. Utilizing widely distributed computational resources
efficiently with execution domains. To appear in Computer Physics Communications, 2001.

J. Basney, R. Raman, and M. Livny. High throughput monte carlo. In Proceedings of the Ninth
S AM Conference on Parallel Processing for Scientific Computing, March 1999.

J. Bester, |. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. A distributed resource man-
agement architecture that supports advance reservations and co-allocation. In International
Workshop on Quality of Service, 1999.

J. Bester, |. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A data movement and
access service for wide area computing systems. In Proceedings of the 6th Workshop on 1/0
in Parallel and Distributed Systems, May 1999.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for
differentiated services. IETF RFC 2475 (Informational), December 1998.

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation protocol
(RSVP) — version 1 functional specification. |IETF RFC 2205 (Standards Track), September
1997.

T. Brecht. An experimental evaluation of processor pool-based scheduling for shared-memory
numa multiprocessors. In Proceedings of the IPPS 1997 Workshop on Job Scheduling Strate-
gies for Parallel Processing, volume 1291 of Lecture Notes in Computer Science, pages 139—
165. Springer Verlag, April 1997.

D. Burger and T. Austin. The simplescalar tool set, version 2.0. Computer Architecture News,
25(3):13-25, June 1997.

P. Cao, E. Feten, A. Karlin, and K. Li. A study of integrated prefetching and caching strate-
gies. In Proceedings of the 1995 ACM SGMETRICS Joint International Conference on Mea-
surement and Modeling of Computer Systems, pages 188-197, 1995.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

59

R. Carr and J. Hennessy. WSCLOCK — a simple and effective algorithm for virtual memory
management. In Proceedings of the 8th Symposium on Operating System Principles, vol-
ume 15 of Operating Systems Review, December 1981.

A. Chervenak, |. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The datagrid: Towardsan
architecture for the distributed management and analysis of large scientific datasets. To appear
in Journa of Network and Computer Applications, 2001.

F. Douglis and J. Ousterhout. Transparent process migration: Design aternatives and the
Sprite implementation. Software — Practice and Experience, 21(8):757—785, August 1991.

D. Eager, E. Lazowska, and J. Zahorjan. Adaptive load sharing in homogeneous distributed
systems. |EEE Transactions on Software Engineering, pages 662—675, May 1986.

D. Eager, E. Lazowska, and J. Zahorjan. The limited performance benefits of migrating active
processes for load sharing. In ACM SSGMETRICS Conference on Measuring and Modeling of
Computer Systems, pages 662—675, May 1988.

R. Feiertag and E. Organisk. The Multics input/output system. In Proceedings of the 3rd
Symposium on Operating System Principles, pages 3541, 1971.

D. Feitelson and M. Jette. Improved utilization and responsiveness with gang scheduling. In
Proceedings of the IPPS’ 97 Workshop on Job Scheduling Strategies for Parallel Processing,
1997.

D. Ferrari, A. Gupta, and G. Ventre. Distributed advance reservation of real-time connections.
Lecture Notes in Computer Science, 1018, 1995.

|. Foster and C. Kesselman. Globus. A metacomputing infrastructure toolkit. International
Journal of Supercomputer Applications, 11(2):115-128, 1997.

I. Foster, C. Kesselman, and S. Tuecke. The Nexus approach to integrating multithreading and
communication. Journal of Parallel and Distributed Computing, 37:70-82, 1996.

|. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations. International Journal of Supercomputer Applications, 2001.

I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogill. Remote i/o: Fast access to distant storage.
In Proceedings of the Workshop on /O in Parallel and Distributed Systems (IOPADS), pages
14-25, 1997.

|. Foster, V. Sander, and A. Roy. A quality of service architecture that combines resource
reservation and application adaptation. In Proceedings of the Eighth International Workshop
on Quality of Service, pages 181-188, June 2000.

J. Goux, J. Linderoth, and M. Yoder. Metacomputing and the master-worker paradigm. Tech-
nical Report ANL/MCS-P792-0200, Mathematics and Computer Science Division, Argonne
National Laboratory, 2000.

60

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. Harchol-Balter and A. Downey. Exploiting process lifetime distributions for dynamic load
balancing. ACM Transactions on Computer Systems, 15(3), August 1997.

H. Hellerman and H. Smith, Jr. Throughput analysis of some idealized input, output, and
compute overlap configurations. ACM Computing Surveys, 2(2), June 1970.

G. Hoo, W. Johnston, I. Foster, and A. Roy. QoS as middleware; Bandwidth reservation
system design. In Proceedings of the 8th |EEE Symposium on High Performance Distributed
Computing, pages 345-346, 1999.

J. Howard. An overview of the Andrew file system. In Proceedings of the Winter 1988 USENIX
Conference, pages 23-26, February 1988.

M. Jones. Interposition agents. Transparently interposing user code at the system interface.
14th ACM Symposium on Operating Principles, 27(1), December 1993.

P. Krueger and M. Livny. A comparison of preemptive and non-preemptive load distributing.
In 8th International Conference on Distributed Computing, pages 123-130, June 1988.

W. Leland and T. Ott. Load-balancing heuristics and process behavior. In ACM SGMETRICS,
volume 14, pages 5469, 1986.

J. Linderoth, S. Kulkarni, J. Goux, and M. Yoder. An enabling framework for master-worker
applications on the computational grid. In Proceedings of the Ninth |EEE Symposium on High
Performance Distributed Computing, pages 43-50, August 2000.

M. Litzkow and M. Solomon. Supporting checkpointing and process migration outside the
Unix kernel. In Conference Proceedings of the Usenix Winter 1992 Technical Conference,
pages 283-290, January 1992.

M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and migration of UNIX
processes in the Condor distributed processing system. Technical Report 1346, Computer
Science Department, University of Wisconsin-Madison, April 1997.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor — a hunter of idle workstations. In
Proceedings of the 8th International Conference on Distributed Computing Systems, pages
104-111, 1988.

J. Liu. A multilevel load balancing algorithm in a distributed system. In Proceedings of the
19th ACM Annual Computer Science Conference, page 670, March 1991.

J. Liu. A model for job scheduling in a distributed computer network. In Proceedings of the
1992 ACM/SIGAPP Symposium on Applied Computing (Vol. I1): Technological Challenges of
the 1990s, pages 818-824, 1992.

M. Livny. The Sudy of Load Balancing Algorithms for Decentralized Distributed Processing
Systems. PhD thesis, Scientific Council of the Weizmann Institute of Science, August 1983.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

61

M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for high throughput com-
puting. SPEEDUP Journal, 11(1):36-40, June 1997.

M. Livny and R. Raman. High-throughput resource management. In|. Foster and C. Kessel-
man, editors, The Grid: Blueprint for a New Computing Infrastructure, chapter 13. Morgan
Kaufmann Publishers, Inc., 1998.

Q. Ma, P. Steenkiste, and H. Zhang. Routing high-bandwidth traffic in max-min fair share
networks. In Proceedings of the ACM SGCOMM ’'96 Conference, pages 206217, August
1996.

A. Mankin, F. Baker, B. Braden, S. Bradner, M. O’'Dell, A. Romanow, A. Weinrib, and
L. Zhang. Resource reservation protocol (RSVP) version 1 applicability statement: Some
guidelines on deployment. IETF RFC 2208 (Informational), September 1997.

M. McKusick, W. Joy, S. Leffler, and R. Fabry. A fast file system for Unix. ACM Transactions
on Computer Systems, 2(3):181-197, August 1984.

R. Metcalfe and D. Boggs. Ethernet: Distributed packet switching for local computer net-
works. Communications of the ACM, 19(7):395-404, July 1976.

M. Mutka. Estimating capacity for sharing in a privately owned workstation environment.
|EEE Transactions on Software Engineering, 18(4):319-328, April 1992.

M. Mutkaand M. Livny. The available capacity of aprivately owned workstation environment.
Performance Evaluation, 12(4):269-284, July 1991.

B. Ozden, A. Goldberg, and A. Silberschatz. Scalable and non-intrusive load-sharing in owner-
based distributed systems. In 5th IEEE Symposium on Parallel and Distributed Processing,
pages 690-699, December 1993.

R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed prefetching and
caching. In Proceedings of the 15th ACM symposium on Operating systems principles, pages
79-95, 1995.

J. Plank. Improving the performance of coordinated checkpointers on networks of worksta-
tions using RAID techniques. In 15th Symposium on Reliable Distributed Systems, pages
76-85, October 1996.

J. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under UNIX.
In Usenix Winter 1995 Tech. Conf., pages 213-223, January 1995.

J. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsey. Memory exclusion: Optimizing the
performance of checkpointing systems. Software — Practice and Experience, 29(2):125-142,
1999.

J. Plank, J. Xu, and R. Netzer. Compressed differences: An agorithm for fast incremental
checkpointing. Technical Report CS-95-302, University of Tennessee, August 1995.

62

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

R. Raman. Matchmaking Frameworks for Distributed Resource Management. PhD thesis,
University of Wisconsin-Madison, 2001.

R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource management for
high-throughput computing. In Proceedings of the 7th |EEE International Symposium on High
Performance Distributed Computing, July 1998.

R. Raman, M. Livny, and M. Solomon. Matchmaking: An extensible framework for distributed
resource management. Cluster Computing: The Journal of Networks, Software Tools and
Applications, 2:129-138, 1999.

R. Raman, M. Livny, and M. Solomon. Resource management through multilateral match-
making. In Proceedings of the Ninth IEEE International Symposium on High Performance
Distributed Computing, August 2000.

A. Romanow and S. Floyd. The dynamics of TCP traffic over ATM networks. In Proceedings
of the SGCOMM Conference, pages 79-88, 1994.

O. Schelén, A. Nilsson, J. Norrgard, and S. Pink. Performance of QoS agents for provisioning
network resources. In Proceedings of IFIP Seventh International Workshop on Quality of
Service, June 1999.

S. Shenker, C. Partridge, and R. Guerin. Specification of guaranteed quality of service. IETF
RFC 2212 (Standards Track), September 1997.

J. Shoch and J. Hupp. Measured performance of an ethernet local network. Communications
of the ACM, 23(12):711-721, December 1980.

L. Smarr and C. Catlett. Metacomputing. Communications of the ACM, 35(6):44-52, June
1992.

R. Stevens, P. Woodward, T. DeFanti, and C. Catlett. From the i-way to the national technology
grid. Communications of the ACM, 40(11):31-60, November 1997.

A. Tanenbaum. Modern Operating Systems. Prentice-Hall, Inc., 1992,

D. Thain, J. Basney, S. Son, and M. Livny. The Kangaroo approach to data movement on the
grid. August 2001.

D. Thain and M. Livny. Bypass: A tool for building split execution systems. In Proceedings
of the Ninth IEEE Symposium on High Performance Distributed Computing, pages 79-85,
August 2000.

D. Thain and M. Livny. Multiple bypass. Interposition agents for distributed computing.
Journal of Cluster Computing, 4:39-47, Spring 2001.

63

[69] M. Theimer, K. Lantz, and D. Cheriton. Preemptable remote execution facilities for the V-
system. In 10th ACM Symposium on Operating Systems Principles, pages 2-12, December
1985.

[70] R. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hierarchical clustering: A structure for scal-
able multiprocessor operating system design. Journal of Supercomputing, 9:105-134, 1995.

[71] S. Vazhkudai, S. Tuecke, and |. Foster. Replica selection in the Globus Data Grid. In Pro-
ceedings of the First IEEE/ACM International Conference on Cluster Computing and the Grid
(CCGRID 2001), pages 106-113. IEEE Computer Society Press, May 2001.

[72] D. Walsh, B. Lyon, G. Sager, J. M. Chang, D. Goldberg, S. Kleiman, T. Lyon, R. Sandberg,
and P. Weiss. Overview of the SUN network file system. In Proceedings of the Winter Usenix
Conference, 1985.

[73] J. Wang, S. Zhou, K. Ahmed, and W. Long. LSBATCH: A distributed load sharing batch
system. Technical Report CSRI-286, Computer Systems Research Institute, University of
Toronto, April 1993.

[74] L. C. Wolf, L. Delgrossi, R. Steinmetz, and S. Schaller. Issues of reserving resources in
advance. Lecture Notes in Computer Science, 1018, 1995.

[75] R. Wolski. Dynamically forecasting network performance to support dynamic scheduling
using the network wesather service. In Proceedings of the Sxth IEEE International Symposium
on High Performance Distributed Computing, August 1997.

[76] R. Wolski, N. Spring, and J. Hayes. Predicting the CPU availability of time-shared Unix
systems. Technical Report CS98-602, Computer Science Department, University of California
at San Diego, October 1998.

[77] J. Wroclawski. Specification of the controlled-load network element service. IETF RFC 2211
(Standards Track), September 1997.

[78] J. Wroclawski. The use of RSVP with IETF integrated services. IETF RFC 2210 (Standards
Track), September 1997.

[79] E. Zayas. Attacking the process migration bottleneck. In Proceedings of the 11th ACM Sym-
posium on Operating Systems Principles, pages 13-24, November 1987.

[80] S. Zhou and T. Brecht. Processor pool-based scheduling for large-scale NUMA multipro-
cessors. In Proceedings of the 1991 ACM SSGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 133-142, May 1991.

[81] S.Zhou, J. Wang, X. Zheng, and P. Delide. Utopia: A load-sharing facility for large heteroge-
neous distributed computing systems. Software — Practice and Experience, 23(2):1305-1336,
December 1993.

64

Appendix A

Network Management Library

A.1 Introduction

The network management library contains the following classes:
e Router: enumerates the network hops between two addresses
e NetworkCapacity: tracks the capacity of network segments
e NetworkCapacityAllocator: alocates aggregate network capacity
e NetworkBandwidthAllocator: allocates bandwidth (FCFS)
e NetworkShareAllocator: allocates bandwidth (max-min fair-share)
e NetworkReservations. allocates future bandwidth
e NetworkUsage: tracks usage per subnet over an interval
e NetworkUsageAllocator: fair-share network allocation interface
e NetworkManager: ties all the classes together for use in Condor

The NetworkAllocator classes all use the Router class. In each scheduling interval, reservations
for the current window are transferred from the ReservationAllocator to the BandwidthAllocator.
The BandwidthAllocator in turn tells the NetworkCapacityAllocator how much it can allocate. The
NetworkUsageAllocator controls fair-share allocation.

A.2 Allocation Algorithm

Network capacity is alocated in the NetworkManager as follows. First, the administrator sets the
following parameters:

e NETWORK_ROUTINGINFO: The path to the network routing table configuration file (de-
scribed below).

e NETWORK CAPACITY INFO: The path to the network capacity configuration file (de-
scribed below).

65

e NETWORK HORIZON: What is the bandwidth allocation granularity (the size of the alo-
cation window in seconds)? This parameter should usually be equal to the matchmaker’'s
scheduling granularity set by NEGOTIATOR INTERVAL.

e NETWORK _USAGE_HORIZON: Over what horizon (in seconds) do we calculate per-user
fair-share network allocations (3600 by default)?

e NETWORK CAPACITY ALLOCATION LIMIT: What is the maximum network capacity
(in seconds) alowed in asingle alocation (900 by default)?

e NETWORK_RESERVATION LIMIT: What percentage of expected available future band-
width may be reserved (50% by default)?

e NETWORK _BANDWIDTH_CONTROL LOWER LIMIT: The minimum percentage of
bandwidth to be allocated to active rate controlled connections, if any, to avoid starvation
(10% by default).

e MAX_GOODPUT NETWORK CAPACITY PER_.JOB: What is the maximum percentage
(between 0.0 and 1.0) of network capacity for job placement that a qualified goodput transfer
may request (0.0 by default)? Jobs that require less network capacity than this limit get a
priority boost when bandwidth is oversubscribed to start running on idle CPUs. This alows
Condor to keep CPUs busy even when the network is a bottleneck for higher priority jobs.

e NETWORK _CAPACITY RESERVED FOR _GOODPUT: What percentage of capacity (be-
tween 0.0 and 1.0) do wereserve for qualified goodput transfers when needed (0.0 by default)?
This controls how much of a priority boost jobs with low network requirements receive when
bandwidth is oversubscribed.

Condor allocates CPUs to jobs according to CPU fair-share, controlling job placements so the net-
work will not be oversubscribed. If ajob placement requires capacity on a network that is already
alocated to its horizon, Condor will try to find adifferent CPU on which to place the job for which
network capacity is available. If no such CPU can be found, the job must wait until capacity be-
comes available in the network horizon.

Condor makes the following guarantee to jobs waiting for network capacity. If the user has
not already received his or her fair-share in the current “usage horizon”, network capacity will not
be allocated to any other users with lower CPU priority before it is allocated to this user. In other
words, so long as the user has not exceeded his or her fair-share of network resources, no other users
will move ahead of this user in the job queue because of Condor’s network scheduling.

There is one caveat to this guarantee, however. The administrator may reserve some percentage
of network capacity for overall system “goodput”. Qualified jobs may use this reserved capacity
for their placements, potentially moving ahead of the waiting user, if those jobs will use CPUs
that would otherwise have remained idle. The impact of these jobs is limited by the percentage of
capacity reserved. Reserved goodput capacity not used by goodput jobs is returned to the general-
purpose pool, so the actual increase in waiting time will often be less.

66

A.3 Routing

The format of the NETWORK_ROUTING_INFOfileis:

| P- ADDR SUBNET- MASK
--> NEXT- HOP | P- ADDR SUBNET- MASK

where IP-ADDR, SUBNET-MASK, and NEXT-HOP are al given in the standard numbers-and-
dots notation. The first line defines a network resource and the “- - >” lines that follow define hops
from that network resource to other network resources. For a given route, the source network is the
network resource for which:

source-i p-addr & SUBNET- MASK == | P- ADDR & SUBNET- MASK

with the largest SUBNET-MASK, and likewise the destination network is the network resource for
which:

destination-ip-addr & SUBNET- MASK == | P- ADDR & SUBNET- MASK

with the largest SUBNET-MASK. For the hop definitions, the NEXT-HOP field specifies the IP-
ADDR of the network resource that is the next hop for destination addresses for which:

destination-ip-addr & SUBNET- MASK == | P- ADDR & SUBNET- MASK

with the largest SUBNET-MASK. The routing algorithm starts at the source network and follows
the next-hop configuration until it reaches the destination network. The current implementation
requires that:

| P- ADDR == | P- ADDR & SUBNET- MASK

(i.e., the masked-out IP-ADDR fields must be 0). Since the routing algorithm searches al re-
sources’hops for the largest matching SUBNET-MASK, the order in which the resources and hops
are specified is not important.

The simplest configuration is:

0.0.0.0 0.0.0.0

This configuration defines a single network segment connecting al endpoints. The SUBNET-
MASK of 0.0.0.0 will match any IP address. Any bandwidth limits defined for the 0.0.0.0 network
will be applied to all transfers between endpoints. Bandwidth limits can also be set for specific
endpoint addresses using this configuration.

The example in Figure 35 describes a network with 2 subnets, connected to each other and to
the internet. The “internet” is defined with a SUBNET-MASK of 0.0.0.0, so it will match any IP
address. However, addresses on either of the two subnets will correctly match the subnets with the
larger 255.255.255.0 mask.

Depending on how you intend to use it, the routing table can be very detailed or may describe
a very idealized representation of your network. The routing table is used to alocate capacity

67

0.0.0.0 0.0.0.0 # internet
--> 128.105.101.0 128.105.101.0 255.255.255.0 # --> 101
--> 128.105.102.0 128.105.102.0 255.255.255.0 # --> 102

128.105. 101. 0 255. 255. 255.0 # 101
--> 128.105.102. 0 128. 105. 102. 0 255.255.255.0 # --> 102
-->0.0.0.00.0.0.00.0.0.0 # --> inet
128. 105. 102. 0 255. 255. 255. 0 # 102
--> 128.105.101. 0 128.105.101. 0 255. 255.255.0 # --> 102
-->0.0.0.0 0.0.0.0 0.0.0.0 # --> inet

Figure 35: Example Routing Table

128.105.101.3 --> 128.105.101.0 --> 128. 105.101.5
128.105.101.3 --> 128.105.101.0 --> 128. 105.102.0
--> 128.105.102.5
128.105.101.3 --> 128.105.101.0 --> 0.0.0.0
--> 216. 115. 108. 245

Figure 36: Example Routes from Figure 35

on shared network resources, so it must include a definition for al resources defined in the NET-
WORK_CAPACITY INFO file. Thereis no need to include endpoints in the table, however. The
route always starts with the source address and ends with the destination address of the flow. For
example, the table in Figure 35 will yield the routes shown in Figure 36.

If the router connecting the 2 subnets and the internet is a bottleneck, we can explicitly include
it in the routing table so we can allocate its capacity for flows that traverse it as in Figure 37. We
just chose one of the router’s interfaces to identify it. Since we do not expect the router itself to be
an endpoint, we just heeded to choose an address and mask that would not match actual endpoints
in our system. The internet has next-hop definitions for both subnets through the router, the router
has next-hop definitions to the subnets and the internet, and the subnets have one next-hop defined
to the router (i.e., all routes to endpoints that are not on the subnets must traverse the router). This
modified routing table will yield the routes shown in Figure 38.

These routes will usualy be different from what we would see from traceroute because our
routes include network segments in addition to routers and endpoints so we can allocate capacity on
al network resources. Our routing table definesa*“virtual” network, abstracting away detailswe are
not interested in and using virtual addresses for network resources that in reality have no assigned
I P address (network segments, Ethernet bridges) or have multiple | P addresses (routers).

68

0.0.0.0 0.0.0.0

--> 128.105.101. 2 128. 105. 101. 0 255. 255. 255.0
--> 128.105.101. 2 128. 105. 102. 0 255. 255. 255. 0
128. 105. 101. 2 255. 255. 255. 255 router
--> 128.105.101. 0 128. 105. 101. 0 255.255.255.0 # --> 102

internet
#
#
#
#
--> 128.105.102. 0 128.105.102.0 255.255.255.0 # --> 102
#
#
#
#
#

--> router
--> router

-->0.0.0.0 0.0.0.0 0.0.0.0 --> inet
128.105. 101. 0 255. 255. 255.0 101

--> 128.105.101.2 0.0.0.0 0.0.0.0 -->router
128.105. 102. 0 255. 255. 255.0 102

--> 128.105.101.2 0.0.0.0 0.0.0.0 -->router

Figure 37: Another Example Routing Table

128.105.101.3 --> 128.105.101.0 --> 128. 105. 101.

128.105.101.3 --> 128.105.101.0 --> 128. 105.101. 2
--> 128.105.102.0 --> 128. 105.102.5

128.105.101.3 --> 128.105.101.0 --> 128. 105.101.2
-->0.0.0.0 --> 216.115.108. 245

(3]

Figure 38. Example Routes from Figure 37

A.4 Network Capacity

The format of the NETWORK_CAPACITY _INFOfileis:
| P- ADDR CAPACI TY

where IP-ADDR indicates an endpoint IP address or a network resource from the NET-
WORK _ROUTING_INFO file in the standard numbers-and-dots notation and CAPACITY is a
floating-point number indicating the network capacity (in Mbps) of the resource. For example:

128. 105.101. 0 40.0
128.105.65.3 5.0

defines a 40 Mbps limit on the 128.105.101.0 subnet and a5 Mbps limit for the host 128.105.65.3.

