

Variant Detection in Next Generation Sequencing Data

John Osborne Sept 14,2012

+ Overview

- My Bias
 - Talk slanted towards analyzing whole genomes using Illumina paired end reads with open source tools
- Background
- Alignment Software
- Detecting Variation
 - Nucleotide
 - Structural
- Analyzing and Interpreting Variation
- Best practices change extremely rapidly

Next Generation Sequencing

- B. gDNA is fragmented into a library of small segments that are each sequenced in parallel.
- C. Individual sequence reads are reassembled by aligning to a reference genome.
- D. The whole-genome sequence is derived from the consensus of aligned reads.

Taken from Illumina website

Short Read Alignment

- Making comparisons is very difficult!
- Test Parameters
 - Read length size
 - Introduced errors
 - Paired versus single end reads
- Metrics
 - Discovery? Accuracy? Area under curve?
 - What is correct?
- Downstream analysis
- Comparisons are time consuming to do and are typically only done when somebody releases a new aligner

From homepage of Heng Li: http://lh3lh3.users.sourceforge.net/alnROC.shtml

Short Read Aligner Conclusions

- The differences between aligners are not that large anymore
 - BWA, Bowtie2 are all available on cheaha
- I currently recommend BWA, but I suspect it will be supplanted by something else
 - Bowtie2
 - Novoalign
 - SeqAlto or something newer
- For longer reads (>=200bp) I would recommend BWA-SW, Bowtie2 (long read version) or CUSHAW2 (new)
- Select your aligner based on your downstream workflow, for example use of BWA is recommended by GATK

HugeSeq Workflow

From "Detecting and annotating genetic variations using the HugeSeq pipeline" Lam et al., 2012

Variation Detection

Nucleotide Polymorphisms

"Structural Variants" / Rearrangements

```
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seg/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens"
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
                                                                                VCF 4 1 Format
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=g10, Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
                         REF
                                        OUAL FILTER INFO
                                                                                                   NA000
               TD
                                ALT
                                                                                       FORMAT
20
       14370
               rs6054257 G
                                А
                                        29
                                             PASS
                                                   NS=3;DP=14;AF=0.5;DB;H2
                                                                                       GT:GO:DP:HO 010:4
    17330
                                             g10 NS=3;DP=11;AF=0.017
                                                                                       GT:GQ:DP:HQ 0|0:4
20
                         TP.
                                A
                                        3
               .
                                G,T
                                            PASS NS=2; DP=10; AF=0.333, 0.667; AA=T; DB GT:GQ:DP:HQ 1|2:2
20
      1110696 rs6040355 A
                                        67
20
                                            PASS NS=3; DP=13; AA=T
      1230237 .
                         T
                                        47
                                                                                       GT:GO:DP:HO 010:5
                                G,GTCT
20
      1234567 microsat1 GTC
                                        50
                                             PASS
                                                    NS=3; DP=9; AA=G
                                                                                       GT:GO:DP
                                                                                                    0/1:3
```


+ SNP Detection

- Most advanced and reliable variant detection
 - New version of GATK can detect MNPs as well
- Coverage and Toolkit matter
- Problem isn't finding SNPs, it is finding the right SNPs

+ Coverage versus Sensitivity

b

From "Detecting and annotating genetic variations using the HugeSeq pipeline" Lam et al., 2012

+GATK and SAMTools Variant Calling

Ti/Tv

Sensitivity

2.15

97.9%

annotating genetic variations using the HugeSeq pipeline" Lam et al., 2012

False Positives

-Data from human monozygotic twins

-Artifacts from borderline low coverage, top twin has 17 high quality reads (7 A) and the bottom has 23 high quality reads (2 A)

+ Structural Variation

Methods

- Small indels within single reads (GATK)
- Discordant paired-end reads (Breakdancer, VariationHunter)
- Depth of coverage (CNVnator, SegSeq)
- Split reads (Pindel, ClipCrop)
- Very active area of research
 - Combined approaches becoming more common

PINDEL Sample Output

452672 D 4 NT 0 "" ChrID chr17 BP 16323608 16323613 BP_range 16323608 16323	616 Supports 27 26 + 8 8 - 19 18 S1 180 SUM_MS 1341 2 1	NumSupSampl
CTTCCAGAGTACCTGAGCAAGAACCAGCAAGTACCTCACCGACTCGGAATACACAGGTAGACCCTGCCCTGTGGATCCAAGGCTAGGCATCCTGTGAGCTGA	tagtTAGGTGGGCTGTGTGGGCTTGATCCCTGGTCAGGAGCTGAGGAGTGAGT	GA
GATAGGCATCCTGTNAGCTGA	TAGGTGGGCTGTGTGGGCTTGATCCCTGGTCAGGAGCTGAGGAGTGAGT	-
GGATAGGCATCCTGTGAGCTGA	TAGGTGGGCTGTGTGGGCTTGATCCCTGGTCAGGAGCTGAGGAGTGAGT	-
GATCCAAGGATAGGCATCCTGTGAGCTGA	TAGGTGGGCTGTGTGGGCTTGATCCCTGGTCAGGAGCTGAGGAGTGAGT	-
GGATCCAAGGATAGGCATCCTGTGAGCTGA	TAGGTGGGCTGTGTGGGCTTGATCCCTGGTCAGGAGCTGAGGAGTGAGT	-
CTGCCCTGTGGATCCAAGGATAGGCATCCTGTGAGCTGA	TAGGGGGGCTGTGTGGGCTTGATCCCTGGTCAGGAGCTGAGGAGTGAGT	-
CTGCCCTGTGGATCCAAGGATAGGCATCCTGTGAGCTGA	TAGGTGGGCTGTGTGGGCTTGATCCCTGGTCAGGAGCTGAGGAGTGAGT	+
AGACCCTGCGGATCCAAGGATAGGCATCCTGTGGACCGA	TAGGTGGGCTGTGTGGGCTTGATCCCTGGTCAGGAGCTGAGGAGTGAGT	+
TAGACCCTGCCCTGTGGATCCAAGGATAGGCATCCTGTGGAGCTGA	TAGGTGGGCTGTGTGGGCTTGATCCCTGGTCAGGAGCTGAGGAGTGAGT	+
AGAGGTAGACCCTGCCCTGTGGATCCAAGGATAGGCATCCTGTGGAGCTGA	TAGGTGGGCTGTGTGGGCTTGATCCCTGGTCAGGAGCTGAGGAGTGAGT	+
AATACACAGGTAGACCCTGCCCTGTGGATCCAAGGATAGGCATCCTGTGGAGCTGA	TAGGTGGGCTGTGGGCTTGATCCCTGGTCAGGAGCTGAGGAGTG	+
GGAATACACAGGTAGACCCTGCGCTGTGGATCCAAGGATAGGCATCCTGTGAGCTGA	TAGGTGGGCTGTGTGGGCTTGATCCCTGGTCAGGAGCTGAGGAG	-
ACTCGGAATACACAGGTAGACCCTGCGCTGTGGATCCAAGGATAGGCATCCTGTGAGCTGA	TAGGTGGGCTGTGTGGGCTTGATCCCTGGTCAGGAGCTGA	-
CGACTCGGAATACACAGGTAGACCCTGCGCATGGATCCAAGGATAGGCATCCTGTGAGCTGA	TAGGTGGGCTGTGTGGGCTTGATCGCTGGTCAGGAGCT	-
ACCGACTCGGAATACACAGGTAGCCCCTGTGGATCCAAGGATAGGCATCCTGTGGACTGA	TAGGTGGGCTGTGTGGGATTGATCCCTGGTCAGGAG	-

BP_range 16323608 16323616 Supports 27 CCCTGTGGATCCAAGGCTAGGCATCCTGTGAGCTGAtagtTAGGTGGGCTGTGTGGGGCTTGA GATAGGCATCCTGTNAGCTGA TAGGTGGGCTGTGTGGGGCTTGA GGATAGGCATCCTGTGAGCTGA TAGGTGGGCTGTGTGGGGCTTGA GATCCAAGGATAGGCATCCTGTGAGCTGA TAGGTGGGCTGTGTGGGGCTTGA

Neither deletion was detected by Pindel..

Pitfalls of Structural Variant Detection with NGS

Tips

- Get as much coverage as possible
 - Not possible to find breakpoints with 5 fold coverage
- Use multiple approaches
- Remove duplicates
- If it is important and you have time... look
 - In twin study, only 2 out of 12 SVs found by Pindel
- Personal Bias
 - GATK (small indels), Breakdancer (rearrangements), Pindel (split reads) and CNVator (repeat size estimation)

+ Interpreting Variation

- Getting some variants is easy, analyzing them is hard
- Commonly used tools in CCTS
 - IGV, BedTools, VCFTools, SNPEff
- Pipelines are becoming more popular
 - Annovar (Sift, Polyphen2)
- Online Resources

"Fast gapped-read alignment with Bowtie 2", Langmead and Saltzburg (2012)

	(a) Ballitoolb Bitt B Called			
Aligner	Called	%Correct	%Discovered	
SeqAlto	412547	97.469	95.259	
Snap	416288	96.672	95.336	
Bowtie2	399420	98.521	93.223	
BWA	410085	97.924	95.132	
Stampy	410682	97.859	95.207	
Novoalign	415850	97.088	95.646	

(a) Samtools SNPs Called

(b) Samtools Indels Called

Aligner	Called	%Correct	%Discovered
SeqAlto	21949	99.932	98.329
Snap	18646	98.970	82.907
Bowtie2	20486	99.981	91.925
BWA	21181	99.971	95.246
Stampy	21824	99.936	97.929
Novoalign	17978	99.967	94.397

Fast and Accurate Read Alignment for Resequencing, Mu et al, (2012)

Aligner	Called	%Correct	%Discovered
SeqAlto	429949	96.688	98.481
Snap	432023	96.078	98.332
Bowtie2	412753	98.250	96.070
BWA	426207	97.466	98.409
Stampy	427137	97.290	98.446
Novoalign	430906	96.674	98.686

(b) GATK Indels Called

Aligner	Called	%Correct	%Discovered
SeqAlto	22057	99.941	98.477
Snap	25563	93.319	90.303
Bowtie2	20750	99.918	91.809
BWA	21228	99.915	95.174
Stampy	22696	99.277	98.288
Novoalign	20899	99.947	93.610

Fast and Accurate Read Alignment for Resequencing, Mu et al, (2012)

+ Key Points

- Best practices change extremely rapidly
 - We don't know what the single best workflow is today
- Core variant toolset used by UAB CCTS
 - BWA for reference based alignment
 - Picard (duplicate removal)
 - GATK for SNP calling, realignment and recalibration
 - Breakdancer, Pindel for Structural Variant Detection
 - BedTools, VCFtools, IGV for interpretation

chrl	802093	G	A	521.67	GT:AD:DP:GQ:PL	1/1:1,23:24:48.11:555,48,0
chrl	802191	G	A	54.33	GT:AD:DP:GQ:PL	0/1:31,12:43:84.36:84,0,458
chrl	802320	G	A	349.65	GT:AD:DP:GQ:PL	0/1:9,15:27:10.30:379,0,10

- 3 genotypes (0/0, 0/1, 1/1)
- GQ:PL
 - Genotype Quality
- AD:DP
 - Average Depth : Depth Quality

Workflow Overview

Workflow from "Consensus Rules in Variant Detection from Next-Generation Sequencing Data", Jia et al. (2012)

- Nucleotide Polymorphisms
 - SNPs
 - MNPs
- "Structural Variants" / Rearrangements
 - Insertions/Deletions (small and large)
 - Inversions
 - Tandem Duplications
 - Translocations

