
www.it.ufl.edu

The tale of the UFRC Galaxy	

Oleksandr Moskalenko, Ph.D.
UFIT Research Computing

SURAGrid Call on September 16th, 2013

www.it.ufl.edu

  Provide an easy to use interface for entry
level analyses at first, expand the mission as
the Galaxy’s capabilities grow

  Provide a collaborative environment
  Provide a teaching environment
  Supplant the iNquiry instance to be retired

from the Genetics Institute

Galaxy goals	

www.it.ufl.edu

  Deployment history
  Development and deployment setup
  Production configuration

UF Galaxy History and stats	

www.it.ufl.edu

  1st prototype – KVM Virtual Machines – crash
and burn

  2nd prototype – real head node, Lustre FS,
dedicated Torque/MOAB reservation

  1st production setup – (10 months)
◦  Head node (4cores, 16GB RAM)
◦  Cluster (SGE – 4 12-core/96GB RAM nodes)
◦  Lustre FS (60TB)
◦  1Gbit network, Infiniband from nodes to storage
◦  Software provided by the modules system

History	

www.it.ufl.edu

  Number of active users (last 6mo) - ~150
  Size of the database/files – 5TB
  Jobs run: over 11000
  Hardware:
◦  Head node – 4 cores, 16GB RAM (32GB upcoming)
◦  Cluster
  7000 cores, 2GB/core average RAM
  120, 500GB RAM bigmem nodes (1TB upcoming)
◦  Storage
  NexentaStor ZFS/NFS – slow (/galaxy)
  HA NexentaStor ZFS/NFS – fast (/bio, ref data)

Initial production setup (2012)	

www.it.ufl.edu

  Number of active users (<6mo) - still ~150
  Size of the database/files – 18TB + >6TB refs.
  Jobs run: over 11000 - > 31300, ~1,700/Mo
  Over 500 tools - biology, chemistry (gaussian)
  Hardware:
◦  Head node – 8 cores, 32GB RAM
◦  Cluster (old cluster, preparing a move to HiPerGator)
  7000 cores, 2GB/core average RAM
  500GB RAM, 1TB bigmem nodes
◦  Storage
  NexentaStor ZFS/NFS (/galaxy)
  HA NexentaStor ZFS/NFS for reference data (/bio)

Current Production (2013) ~3x/yr	

www.it.ufl.edu

  3 head nodes: production, staging, development

◦  Development:
  Up-to-date galaxy-central code
  Wrapper development
  Hacking on the galaxy core
◦  Staging:
  Pull galaxy-dist releases
  Pull and update a copy of the production database
  Clean and stabilize
  Set up tools and local modifications and wrappers
  Replace the production code

Deployment and development	

www.it.ufl.edu

  Authentication – Remote User
◦  Apache mod_auth_tkt, LDAP back-end.

  Software – mix of modules and tool shed
  Database node – 4 core, 32GB RAM,

PostgreSQL
  Had a local (campus) Tool Shed, removed for

security considerations

Production Configuration	

www.it.ufl.edu

  Torque - python_pbs memory leaks
  Head node overloaded
  Poor visualization capabilities
  No soft restart capability
  Upgrades – tool cleanup, maintaining hacks
  Providing consistent environment (drmaa.py /

modules)
  No job accounting
  “I can haz moar wrapperzzz”

Initial Hurdles	

www.it.ufl.edu

  Watcher cron job for python_pbs
  Run all jobs on the cluster, even the upload
  Soft restart init scripts
  Use two RCS – mercurial and git to manage

upgrades
  Hacked drmaa.py to load modules
  Unified the tools used on the cluster and in

Galaxy via the environment modules system
  Unified reference databases
  Set up big data import

Early Hacks	

www.it.ufl.edu

  Inappropriate job resource requests hard-
coded into the tool runner URIs

  Tool failures because of bad data or tool
bugs

  Poor understanding of what tools are
needed

  Help with analyses
  Reference dataset issues (dbkey)

User Issue Report Categories	

www.it.ufl.edu

  Jobs at UFRC must run under the real user’s id
◦  Very powerful feature, but opens many cans of worms

  Move from SGE to Torque/MOAB
◦  No green banner of death
◦  Strict resource request handling
◦  Finding a drmaa library that works -

http://apps.man.poznan.pl/trac/pbs-drmaa
  Introduction of the Tool Shed
◦  Cultivate new wrapper contributors
◦  Very unstable at the moment
◦  Divergence from the env. modules in version handling

  Dynamic job runner
◦  Almost unlimited possibilities in with the real userid jobs

“Real User Jobs” – 2012	

www.it.ufl.edu

  Some progress on the reference dataset
handling automation with data tables

  Going from one to three visualization and visual
analysis tools

  Job handling configuration completely redone
recently (xml-based now, decoupled from the
main configuration)

  Intelligent shed tool upgrade handling and
warnings to the users

  Dynamic banner for user communication
  Warning/error messages to the users from the

job handler

Recent Galaxy improvements	

www.it.ufl.edu

  Universal job resource request interface
mechanism

  More flexible output file handling
  No more hard-coding tool arguments
  Reference dataset handling automation
  More documentation and more capabilities

in the tool definition file logic
  More published workflows and docs

The Wish List	

www.it.ufl.edu

  Galaxy wiki is a great resource for experienced minds
  http://gmod.827538.n3.nabble.com/Galaxy-Development-f815885.html

(galaxy-dev list archive on Gmod) and
  http://gmod.827538.n3.nabble.com/Galaxy-Users-f815892i36.html (galaxy-

user list archive on Gmod) are invaluable
  http://seqanswers.com/ - treasure trove of information

on tools when a bug report calls.
  Read the code
  IRC (#galaxyproject) – mostly quiet, but getting a core

developer to commit a new feature to galaxy-central
after a 3 minute discussion is priceless when it happens

  Galaxy Community Conference
  Blogs

Finding Help	

www.it.ufl.edu

Questions?

 	

