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Version Control System (VCS)	


•  Recording changes to files and maintaing 
associated metadata 	


•  Copy or tar command with timestamps 	


•  Types	


•  Centralized	


•  Distributed  	




Centralized vs Distributed VCS	


Reference: http://progit.org/book/ch1-1.html 	




Git 	


•  Git is a free & open source, distributed version 
control system designed to handle everything from 
small to very large projects with speed and efficiency.	


•  Tool for maintaining your work history	


•  Used by:	


•  Linux Kernel	


•  Android	


•  Ruby on Rails	


•  Reference: http://git-scm.org	




Advantages 	


•  Works off-line	


•  Fast	


•  Easy or cheap branching	


•  Public and private work histories 	


•  Rewrite or curate history before making it public	


•  Repositories can talk to each other 	


•  Flexibility in workflows 	




Commits	


•  Tracks content and not 
files	


•  Allows you to stage 
changes	


•  Each commit is a 
complete snapshot of all 
staged files 	


•  Unique 40 character hash 
for each commit	
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Commits	


•  Snapshot 	


•  Committer’s name and email address 	


•  Parent commits 	


•  Commit message 	




Branching	


•  Branch: Line of 
development	


•  ‘master’ branch is the 
default 	


•  Create branches to have 
isolated lines of 
development	


A 'head' is a named reference to a commit object - e.g. branches and tags. A repository 
can contain any number of heads, however it points to only one 'head' at a time. This 
'current head' is called HEAD. 



Branching	


•  Branch: Line of 
development	


•  ‘master’ branch is the 
default 	


•  Create branches to have 
isolated lines of 
development	


A 'head' is a named reference to a commit object - e.g. branches and tags. A repository 
can contain any number of heads, however it points to only one 'head' at a time. This 
'current head' is called HEAD. 



Branching	
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Merging	
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Branching and Merging	


•  Allows switching contexts 	


•  Diverge from main line of development or stable 
code in a clean manner 	


•  Separate space for experimentation and bug fixes	


•  “Local” - private commit history 	


•  Rewrite or curate history before publishing it or 
merging into other branches	




Workflows	


•  Distributed model and cheap branching allows 
numerous types of workflows 	


•  Push model: Centralized repository type	


•  Pull model: Integration manager type 	


•  ‘git workflows --help’	

•  Read more in ProGit book 	




Workflow: Solo	
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Workflow: Solo	
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Workflow: Centralized	
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Workflow: Integration 
Manager	




Workflow: Integration 
Manager	
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Workflow: Integration 
Manager	
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Learn More..	


•  http://progit.org	


•  http://help.github.com	


•  http://eagain.net/articles/git-for-computer-
scientists/	


•  Subversion folks: http://git.or.cz/course/
svn.html	


•  git man pages 	




MOTD	


• Use Git	


•  Works off-line 	


•  Personal logbook 	


•  Curate and publish history 	


•  Flexibility in workflows	


• UABgrid docs: 	


  http://docs.uabgrid.uab.edu/wiki/UsingGitForDevelopment 	




Additional Information	




Git Installation	


•  Linux	


•  Package managers 	


•  Source	


•  Windows	


•  http://code.google.com/p/msysgit/  	


•  Mac:	


•  Source	


•  Homebrew: http://mxcl.github.com/homebrew/ 	




Add-on tools	


•  Access control: gitosis and gitolite	


•  GUI: gitk	


•  Display branch name is shell: http://
www.jonmaddox.com/2008/03/13/show-your-git-
branch-name-in-your-prompt/	




Rewriting History	


•  Remove sensitive data from repository 	


•  Rewrite commits - commit messages, committer 
names, timestamps and committed files	


•  Rewriting changes commit hash	


•  DON’T rewrite commits of published history unless 
absolutely necessary 	


•  Commands: rebase and filter-branch	
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Git Objects	


Reference: http://progit.org/book/ch9-2.html	




Repository Size and Packfiles	


•  Each commit is a complete snapshot	


•  Packs up several blob objects 	


•  Creates index file(s) and pack file(s)	


•  Latest commit includes a complete copy	


•  Older commits contain deltas	


•  git gc - cleanup and optimization	


•  References:	


•  http://progit.org/book/ch9-4.html	


•  http://book.git-scm.com/7_the_packfile.html	




Git with large files	


•  Limitations: 	


•  Compression 	


•  Checksums 	


•  Deltas 	


•  Memory 	


•  http://caca.zoy.org/wiki/git-bigfiles - few hundred MB	


•  http://git-annex.branchable.com/ - tracks content/files without 
checking it in 	




Git with binary files	


•  Configurable with external diff tool 	


•  Create a new type according to file extension 	


•  Configure diff tool for the new type	


•  Details: http://progit.org/book/ch7-2.html 	




Best Practices 	


•  Work in a private and non-tracking local branch 	


•  Granular commits - easier to squash commits 
together than split commits	


•  Fetch and merge 	


•  Create ticket or issue specific branches 	




Git or Mercurial	


• Google’s analysis: 	


• http://code.google.com/p/support/wiki/DVCSAnalysis 	


• Answer to Google’s analysis: 	


• http://felipec.wordpress.com/2011/01/16/mercurial-
vs-git-its-all-in-the-branches/	


• Speed and size: 	


• http://draketo.de/proj/hg-vs-git-server/test-
results.html 	




Git or Mercurial	


•  Language	


•  Git: C and Perl	


•  Mercurial: Python  	


•  Syntax	


•  Branches 	


•  Community 	




Transport protocols	


•  git	


•  SSH 	


•  http(s)	




Community Support	


•  http://vger.kernel.org/vger-lists.html#git 	


•  irc://irc.freenode.net/git 	


•  http://letmegooglethatforyou.com/ 	
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Questions??? 


